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a b s t r a c t

We consider Bayesian estimation of state space models when the measurement density is not available
but estimating equations for the parameters of the measurement density are available from moment
conditions. The most common applications are partial equilibrium models involving moment conditions
that dependondynamic latent variables (e.g., time–varyingparameters, stochastic volatility) anddynamic
general equilibrium models when moment equations from the first order conditions are available but
computing an accurate approximation to the measurement density is difficult.

© 2017 Published by Elsevier B.V.

1. Introduction

We propose a method for conducting Bayesian inference re-
garding the parameters of a nonlinear structural model that has
dynamic latent variables. By latent variables we mean all endoge-
nous and exogenous variables in the model that are not observed.

The general approach to dealing with dynamic latent variables
in econometrics is to resort to filtering techniques (e.g., the par-
ticle filter), which, in connection with Markov Chain Monte Carlo
(MCMC) methods, deliver estimates of the structural parameters
(see Andrieu et al., 2010). To implement a particle filter one needs
to be able to: (1) draw from the transition density of the latent
variables, which specifies the distribution of the latent variables
conditional on their past history; and (2) evaluate the measure-
ment density, which specifies the distribution of the observable
variables conditional on the latent variables.

In this paper, we maintain the assumption that one can draw
from the transition density of the latent variables but we assume
that a measurement density is not available and/or it is difficult to
approximate numerically. What is available is instead a set of mo-
ment conditions that provide estimating equations for the parame-
ters of themeasurement density. Themost commonapplications in
econometricswhere this situation arises are (1) partial equilibrium
models that involve moment conditions depending on dynamic
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latent variables (e.g., time-varying parameters, stochastic volatil-
ity); and (2) dynamic general equilibrium structural models when
moment equations from the first order conditions are available but
computing an accurate approximation to themeasurement density
is difficult. There are currently no econometric methods that apply
to the first class of models, and for the second class of models our
method can be considered as an alternative to existing approaches
that does not rely on approximations or numerical solutions of the
model.

The method of moments has a powerful appeal in economic
research and researchers are increasingly keen to use prior in-
formation as a means to deal with data limitations. The method
we propose here has potential to become a useful tool in applied
economic research, because – as argued by Cochrane (2005) –
most researchers find evidence based onmethod ofmomentsmore
persuasive than evidence based on fully specified likelihoods. Our
contribution is to show that combining method of moments and
priors is viable theoretically and practically in economic models
where the presence of dynamic latent variables makes it impossi-
ble to apply standard GMM estimation.

In fact, if one considers calibration to be Bayesian method of
moments with extremely strong priors, then most of the science
thatmatters in our daily lives uses Bayesianmethod ofmoments. In
particular, climate models and macro models. The main exception
is health, but this is mostly due to government regulation. Also,
the exceptions one finds in macro are mostly due to the pressure
of central banks. Our view is that if statistics is to become relevant
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to major policy decisions, then something along the lines of what
we propose has to become viable.

We illustrate the usefulness of our method by applying it to the
problem of estimating the latent endowment process in a Lucas
(1978) economy given only knowledge of the agent’s first order
conditions and of the transition density of the latent process. The
process we extract differs markedly from measured consumption
and suggests the presence of stochastic volatility and jumps.

The central idea of the paper is to show that the moment
conditions can be used to construct a ‘‘GMM representation’’ of the
measurement density that one can substitute for themeasurement
density as an input into an otherwise standard filtering MCMC
algorithm.

To illustrate, suppose we have a set ofM moment conditions

E[g(yt+1, xt+1, θ )] = 01

implied by a structural model. We observe a realization y =

{y1, . . . , yT } from the stochastic process {. . . , yt−1, yt , yt+1, . . .}

but we do not observe {. . . , xt−1, xt , xt+1, . . .} which is thus the
latent process. What we know about the latent process is a para-
metric specification for its transition density. The objective is to
obtain the posterior distribution of the structural parameter θ
(comprised of the parameters of both the moment conditions and
the transition density) and the posterior distribution of the latent
process. Formally, the posterior is given by

po(θ, x|y) ∝ po(y|x, θ )po(x|θ )po(θ )

where the measurement density po(y|x, θ ) is unknown aside from
the restrictions implicitly imposed by the moment conditions, the
joint density of the latent variables po(x|θ ) is pinned down by the
transition density, and the prior po(θ ) of the parameters is specified
by the researcher. The contribution of this paper is twofold.We first
show that the moment conditions induce a probability structure
that allows us to replace the unknown transition density po(y|x, θ )
with a known density p∗(y|x, θ ). We then propose a numerical
algorithm that uses the particle filter and a Metropolis algorithm
to draw from the posterior p∗(θ, x|y) ∝ p∗(y|x, θ )po(x|θ )po(θ ).

Regarding the first contribution, we build on and extend the
results of Gallant and Hong (2007) and Gallant (2016a, b, c) to an
environment with dynamic latent variables. The key insight is to
show how to replace the probability space over (Y×X ×Θ, Co, Po)
implied by the structural model and a prior for θ (where Y × X is
the support of the observable and latent variables,Θ is the support
of θ , and Co is the collection of Borel subsets of Y × X × Θ) by an
alternative probability space (Y × X ×Θ, C∗, P∗). The alternative
probability space is such that C∗ is a subset of Co and the density
of P∗ is the same as Po except that the measurement density is
replaced by a density function evaluated at the sample moment
conditions gT (scaled to have variance equal to the identity matrix,
i.e., p∗(y | x, θ ) = ψ([Σ(y, x, θ )]−1/2gT (y, x, θ )]). We call this den-
sity function the ‘‘GMM representation’’ of the measurement den-
sity. Becausewe are concernedwith subjective Bayesian inference,
we assume that the density function ψ is specified by the user.2
In practice, we suggest using the standard normal density, which
is motivated by the asymptotic normality of the sample moments
under the standard regularity assumptions. The key insight that
allows us to substitute the unknown measurement density with

1 Expectation for moment conditions is determined by context. If θ is regarded
as exogenous and a likelihood p(x, y | θ ) is well defined, then the meaning is∫∫

g(yt+1, xt+1, θ ) p(x, y | θ ) dy dx = 0. If θ is regarded as endogenous, then the
meaning is

∫∫∫
g(yt+1, xt+1, θ ) p(x, y, θ ) dy dx dθ = 0. Eq. (43) of the application

in Section 6 is an instance of the latter case. The examples in Section 5 are instances
of the former.
2 While this article was in press, methods for determining Ψ from primitives

were proposed in Gallant (2016d).

its GMM representation is the fact that both probability measures
assign the same probability to sets in C∗. Naturally, because C∗ is
a subset of Co, some information is lost. Intuitively this is similar
to the information loss that occurs when one divides the range
of a continuous variable into intervals and uses a discrete distri-
bution to assign probability to each interval. Both the continuous
and discrete distributions assign the same probability to each
interval but the discrete distribution cannot assign probability to
subintervals. How much information is lost depends on how well
one chooses moment conditions. An in-depth investigation of the
effects of moment choice on inference is beyond the scope of this
paper, but we provide some advice on choice strategy for some key
economic applications. In many instances, as in the application of
Section 6, discussion of the choice of moments is moot because the
economics of the situation dictate the choice.

In the state-space literature to which we contribute, (cf. Flury
and Shephard, 2011; Fernandez-Villaverde and Rubio-Ramirez,
2006) the assumption that one can draw from the transition den-
sity is standard. Our contribution is to be able to perform Bayesian
inference without knowledge of the measurement density.

The importance of the first contribution is easy to overlook.
What it does is establish the methodology as exact within the
Bayesian paradigm given the information that the researcher
chooses to use. Leaving aside specification error, inaccurate algo-
rithms, etc. that plague all statistical methods, we are proposing
exact Bayesian methods, not approximate Bayesian methods.

Regarding our second contribution, which builds on ideas from
Beaumont (2003), Andrieu and Roberts (2009), Andrieu et al.
(2010) and Flury and Shephard (2011), the computational strategy
we propose consists of two steps: a conditional particle filter step
that draws x given y, θ , and thepreviously drawn x and aMetropolis
step that draws θ given y, x, and the previously drawn θ . The
validity of the algorithm follows from the results of Andrieu et al.
(2010) as it can be thought of as an adaptation of their particle
Gibbs sampler when one has to resort to the GMM representation
of the measurement density. The application of the algorithm
results in an MCMC chain in (θ, x) and thus parameter estimates,
standard deviations, and other characterizations of the posterior
distribution can be computed from this chain in the standard way
(Gamerman and Lopes, 2006).

The main attraction of the method we propose is that one does
not have to solve the structural model. For partial equilibrium
models this is crucial because, in general, there do not exist prac-
ticable alternatives.

We also expect that an important application for our results
will be statistical inference regarding general equilibrium models
inmacroeconomic applications such as dynamic stochastic general
equilibriummodels (DSGE). For analytically intractableDSGEmod-
els there are alternatives to what we propose that rely on being
able to solve the model numerically. For instance, one can use
perturbation methods to approximate the model, use the approx-
imation to obtain an analytical expression for the measurement
density, and then use some method of numerical integration such
as particle filtering to eliminate the latent variables along the lines
proposed by Fernandez-Villaverde and Rubio-Ramirez (2006) and
Flury and Shephard (2011). Alternatively, one can solve the model
only to the point of being able to simulate it and then use the
methods proposed by either Gallant and McCulloch (2009), who
use an SNP (Gallant and Nychka, 1987) representation of the mea-
surement density, or Gallant and Tauchen (2015), who use an EMM
(Gallant and Tauchen, 1996) representation of the measurement
density.

In the case of DSGE models, the main reason one might want
to consider our alternative to the existing procedures is that one
has misgivings about the quality of the numerical methods one
has used to solve the structural model. For instance, perturbation
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