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a b s t r a c t

This paper constructs an estimator for the number of common factors in a settingwhere both the sampling
frequency and the number of variables increase. Empirically, we document that the covariance matrix
of a large portfolio of US equities is well represented by a low rank common structure with sparse
residual matrix. When employed for out-of-sample portfolio allocation, the proposed estimator largely
outperforms the sample covariance estimator.
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1. Introduction

This paper proposes an estimator, using high frequency data,
for the number of common factors in a large-dimensional dataset.
The estimator relies on principal component analysis (PCA) and
novel joint asymptotics where both the sampling frequency and
the dimension of the covariance matrix increase. One by-product
of the estimation method is a well-behaved estimator of the in-
creasingly large covariance matrix itself, including a split between
its systematic and idiosyncratic matrix components.

Principal component analysis (PCA) and factor models repre-
sent two of the main methods at our disposal to estimate large
covariance matrices. If nonparametric PCA determines that a com-
mon structure is present, then a parametric or semiparametric
factor model becomes a natural choice to represent the data.
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Prominent examples of this approach include the arbitrage pric-
ing theory (APT) of Ross (1976) and the intertemporal capital
asset pricing model (ICAPM) of Merton (1973), which provide an
economic rationale for the presence of a factor structure in asset
returns. Chamberlain and Rothschild (1983) extend the APT strict
factormodel to an approximate factormodel, inwhich the residual
covariances are not necessarily diagonal, hence allowing for co-
movement that is unrelated to the systematic risk factors. Based
on this model, Connor and Korajczyk (1993), Bai and Ng (2002),
Amengual and Watson (2007), Onatski (2010) and Kapetanios
(2010) propose statisticalmethodologies to determine the number
of factors, while Bai (2003) provides tools to conduct statistical
inference on the common factors and their loadings. Connor and
Korajczyk (1988) use PCA to test the APT.

In parallel, much effort has been devoted to searching for ob-
servable empirical proxies for the latent factors. The three-factor
model by Fama and French (1993) and its many extensions are
widely used examples, with factors constructed using portfolios
returns often formed by sorting firm characteristics. Chen et
al. (1986) propose macroeconomic variables as factors, including
inflation, output growth gap, interest rate, risk premia, and term
premia. Estimators of the covariance matrix based on observable
factors are proposed by Fan et al. (2008) in the case of a strict
factor model and Fan et al. (2011) in the case of an approximate
factor model. A factor model can serve as the reference point for
shrinkage estimation (see Ledoit and Wolf (2012) and Ledoit and
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Wolf (2004)). Alternativemethods rely on various forms of thresh-
olding (Bickel and Levina, 2008a,b; Cai and Liu, 2011; Fryzlewicz,
2013; Zhou et al., 2014) whereas the estimator in Fan et al. (2013)
is designed for latent factor models.

The above factor models are static, as opposed to the dynamic
factor models introduced in Gouriéroux and Jasiak (2001) to rep-
resent stochastic means and volatilities, extreme risks, liquidity
and moral hazard in insurance analysis. Dynamic factor models
are developed in Forni et al. (2000), Forni and Lippi (2001), Forni
et al. (2004) and Doz et al. (2011), in which the lagged values of
the unobserved factors may also affect the observed dependent
variables; see Croux et al. (2004) for a discussion. Forni et al. (2009)
adapt structural vector autoregression analysis to dynamic factor
models.

Both static and dynamic factor models in the literature have
typically been cast in discrete time. By contrast, this paper pro-
vides methods to estimate continuous-time factor models, where
the observed variables are continuous Itô semimartingales. The
literature dealing with continuous-time factor models has mainly
focused on models with observable explanatory variables in a low
dimensional setting. For example, Mykland and Zhang (2006)
develop tools to conduct analysis of variance as well as univariate
regression, while Todorov and Bollerslev (2010) add a jump com-
ponent in the univariate regression setting and Aït-Sahalia et al.
(2014) extend the factor model further to allow for multivariate
regressors and time-varying coefficients.

When the factors are latent, however, PCA becomes the main
tool at our disposal. Aït-Sahalia and Xiu (2015) extend PCA from
its discrete-time low frequency roots to the setting of general
continuous-time models sampled at high frequency. The present
paper complements it by using PCA to construct estimators for
the number of common factors, and exploiting the factor struc-
ture to build estimators of the covariance matrix in an increas-
ing dimension setting, without requiring that a set of observable
common factors be pre-specified. The analysis is based on a gen-
eral continuous-time semiparametric approximate factor model,
which allows for stochastic variation in volatilities as well as cor-
relations. Independently, Pelger (2015a, b) propose an alternative
estimator for the number of factors and factor loadings, with a
distributional theory that is entry-wise, whereas the present pa-
per concentrates on the matrix-wise asymptotic properties of the
covariance matrix and its inverse.

This paper shares some theoretical insights with the existing
literature of approximate factormodels in discrete time, in terms of
the strategy for estimating the number of factors. However, there
are several distinctions, which require a different treatment in
our setting. For instance, the identification restrictions we impose
differ from those given by e.g., Bai (2003), Doz et al. (2011) and
Fan et al. (2013), due to the prevalent presence of heteroscedas-
ticity in high frequency data. Also, the discrete-time literature on
determining the number of factors relies on randommatrix theory
for i.i.d. data (see, e.g., Bai and Ng, 2002; Onatski, 2010; Ahn
and Horenstein, 2013; Trapani, 2017), which is not available for
semimartingales.

The methods in this paper, including the focus on the inverse
of the covariance matrix, can be useful in the context of portfo-
lio optimization when the investable universe consists of a large
number of assets. For example, in the Markowitz model of mean–
variance optimization, an unconstrained covariance matrix with d
assets necessitates the estimation of d(d + 1)/2 elements, which
quickly becomes unmanageable as d grows, and even if feasible
would often result in optimal asset allocation weights that have
undesirable properties, such as extreme long and short positions.
Various approaches have been proposed in the literature to deal
with this problem. The first approach consists in imposing some
further structure on the covariance matrix to reduce the number

of parameters to be estimated, typically in the form of a factor
model along the lines discussed above, although Green and Hol-
lifield (1992) argue that the dominance of a single factor in equity
returns can lead empirically to extreme portfolio weights. The
second approach consists in imposing constraints on the portfolio
weights (Jagannathan and Ma, 2003; Pesaran and Zaffaroni, 2008;
DeMiguel et al., 2009a; El Karoui, 2010; Fan et al., 2012; Gandy
and Veraart, 2013) or penalties Brodie et al. (2009). The third
set of approaches are Bayesian and consist in shrinkage of the
covariance estimates (Ledoit and Wolf, 2003), assuming a prior
distribution for expected returns and covariances and reformulat-
ing the Markowitz problem as a stochastic optimization one (Lai
et al., 2011), or simulating to select among competing models of
predictable returns and maximize expected utility (Jacquier and
Polson, 2010). A fourth approach consists in modeling directly the
portfolio weights in the spirit of Aït-Sahalia and Brandt (2001)
as a function of the asset’s characteristics (Brandt et al., 2009).
A fifth and final approach consists in abandoning mean–variance
optimization altogether and replacing it with a simple equally-
weighted portfolio, which may in fact outperform the Markowitz
solution in practice (DeMiguel et al., 2009b).

An alternative approach to estimating covariance matrices us-
ing high-frequency data is fully nonparametric, i.e., without as-
suming any underlying factor structure, strict or approximate,
latent or not. Two issues have attracted much attention in this
part of the literature, namely the potential presence of market
microstructure noise in high frequency observations and the po-
tential asynchronicity of the observations: see Aït-Sahalia and
Jacod (2014) for an introduction. Various methods are available,
including Hayashi and Yoshida (2005) , Aït-Sahalia et al. (2010),
Christensen et al. (2010), Barndorff-Nielsen et al. (2011), Zhang
(2011), Shephard and Xiu (2012) and Bibinger et al. (2014). How-
ever, when the dimension of the asset universe increases to a
few hundreds, the number of synchronized observations is bound
to drop, which requires severe downsampling and hence much
longer time series to be maintained. Dealing with an increased
dimensionality without a factor structure typically requires the
additional assumption that the population covariance matrix itself
is sparse (see, e.g., Tao et al., 2011, 2013b, a). Fan et al. (2016)
assume a factor model but with factors that are observable.

The rest of the paper is organized as follows. Section 2 sets up
themodel and assumptions. Section 3 describes the proposed esti-
mators and their properties. We show that both the factor-driven
and the residual components of the sample covariance matrix
are identifiable, as the cross-sectional dimension increases. The
proposed PCA-based estimator is consistent, invertible and well-
conditioned. Additionally, based on the eigenvalues of the sample
covariance matrix, we provide a new estimator for the number of
latent factors. Section 4 providesMonte Carlo simulation evidence.

Section 5 implements the estimator on a large portfolio of
stocks. We find a clear block-diagonal pattern in the residual cor-
relations of equity returns, after sorting the stocks by their firms’
global industrial classification standard (GICS) codes. This suggests
that the covariance matrix can be approximated by a low-rank
component representing exposure to some common factors, plus
a sparse component, which reflects their sector/industry specific
exposure. Empirically, we find that the factors uncovered by PCA
explain a larger fraction of the total variation of asset returns than
that explained by observable portfolio factors such as the market
portfolio, the Fama–French portfolios, as well as the industry-
specific ETF portfolios. Also, the residual covariance matrix based
on PCA is sparser than that based on observable factors, with
both exhibiting a clear block-diagonal pattern. Finally, we find that
the PCA-based estimator outperforms the sample covariance esti-
mator in out-of-sample portfolio allocation. Section 6 concludes.
Mathematical proofs are in the appendix.
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