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Abstract

We study a class of evolutionary game dynamics defined by balancing a gain determined by the game’s 
payoffs against a cost of motion that captures the difficulty with which the population moves between 
states. Costs of motion are represented by a Riemannian metric, i.e., a state-dependent inner product on the 
set of population states. The replicator dynamics and the (Euclidean) projection dynamics are the archety-
pal examples of the class we study. Like these representative dynamics, all Riemannian game dynamics 
satisfy certain basic desiderata, including positive correlation, local stability of interior ESSs, and global 
convergence in potential games. When the underlying Riemannian metric satisfies a Hessian integrability 
condition, the resulting dynamics preserve many further properties of the replicator and projection dy-
namics. We examine the close connections between Hessian game dynamics and reinforcement learning 
in normal form games, extending and elucidating a well-known link between the replicator dynamics and 
exponential reinforcement learning.
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1. Introduction

Viewed abstractly, evolutionary game dynamics assign to every population game a dynamical 
system on the game’s set of population states. Under most such dynamics, the vector of motion at 
a given population state depends only on payoffs and behavior at that state, implying that changes 
in aggregate behavior are determined by current strategic conditions. Such dynamics may thus 
be viewed as state-dependent rules for transforming current payoffs into feasible directions of 
motion.

In this paper, we introduce a family of evolutionary game dynamics under which the vector 
of motion z from any state x is obtained by balancing two forces. The first, the gain from mo-
tion, is obtained by adding the products of the strategies’ payoffs at x with their rates of change 
under z. This quantity is the measure of agreement between payoffs and motion used in the stan-
dard monotonicity condition for game dynamics.1 The second, the cost of motion, captures the 
difficulty with which the population moves from state x along vector z. Different specifications 
of these quadratic costs define different members of our family of dynamics. These costs are 
usefully represented by means of a Riemannian metric, a state-dependent inner product used to 
evaluate lengths of and angles between vectors of motion. Accordingly, the dynamics studied 
here, defined by maximizing differences between gains and costs, are called Riemannian game 
dynamics.

The two archetypal examples of Riemannian game dynamics are the replicator dynamics (Tay-
lor and Jonker, 1978) and the (Euclidean) projection dynamics (Nagurney and Zhang, 1997), 
both derived from fairly simple structures. First, the replicator dynamics are derived from the 
Shahshahani metric (Shahshahani, 1979), under which the cost of increasing a strategy’s relative 
frequency in the population is inversely proportional to said frequency. Second, the projection 
dynamics are obtained by measuring the cost of motion in the standard Euclidean fashion, inde-
pendently of the population’s current state. Other Riemannian metrics can be used in applications 
where different strategies have clear affinities, allowing the presence and performance of one 
strategy to influence the use of similar alternatives.

The metric’s boundary behavior is the source of a fundamental dichotomy that is best ex-
plained by looking at our two prototypical examples above. Under the replicator dynamics: (i) the 
law of motion for every game is continuous; (ii) the set of utilized strategies remains constant 
along every solution trajectory; and (iii) the dynamics’ rest points are the restricted equilibria of 
the game – the states at which all strategies in use earn the same payoff. In contrast, under the 
Euclidean projection dynamics: (i) the law of motion is typically discontinuous at the bound-
ary of the simplex; (ii) the set of utilized strategies may change infinitely often along the same 
solution trajectory; and (iii) the dynamics’ rest points are the Nash equilibria of the underlying 
game. Based on this behavior, we obtain a natural distinction between continuous and discon-
tinuous Riemannian dynamics, each category sharing the boundary behavior of its prototype. 
In Section 4, we introduce a variety of examples of Riemannian dynamics from both classes; 

1 See Friedman (1991), Swinkels (1993), Sandholm (2001), Demichelis and Ritzberger (2003), and condition (PC)
below.
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