The single-peaked domain revisited: A simple global characterization ${ }^{\text {NT}}$

Clemens Puppe
Department of Economics and Management, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
Received 6 December 2016; final version received 17 December 2017; accepted 4 March 2018
Available online 8 March 2018

Abstract

It is proved that, among all restricted preference domains that guarantee consistency (i.e. transitivity) of pairwise majority voting, the single-peaked domain is the only minimally rich and connected domain that contains two completely reversed strict preference orders. It is argued that this result explains the predominant role of single-peakedness as a domain restriction in models of political economy and elsewhere. The main result has a number of corollaries, among them a dual characterization of the single-dipped domain; it also implies that a single-crossing ('order-restricted') domain can be minimally rich only if it is a subdomain of a single-peaked domain. The conclusions are robust as the results apply both to domains of strict and of weak preference orders, respectively.

© 2018 Elsevier Inc. All rights reserved.

JEL classification: D71; C72

[^0]E-mail address: clemens.puppe@kit.edu.

Keywords: Social choice; Restricted domains; Condorcet domains; Single-peakedness; Majority voting; Single-crossing property

1. Introduction

A subset of preference orders on a finite set of alternatives is called single-peaked if there exists a left-to-right arrangement of alternatives such that all upper contour sets are connected ('convex') with respect to the given left-to-right arrangement of alternatives. The celebrated median voter theorem of Black (1948) and Arrow (1951) states that the domain of all single-peaked linear orders with respect to a fixed underlying spectrum of alternatives form a 'Condorcet domain,' i.e. pairwise majority voting with an odd number of individuals each of whom has preferences from the given domain induces a transitive relation. Moreover, the domain of all single-peaked preferences is minimally rich in the sense that every alternative is on top of at least one preference order; it is connected in the sense that every two single-peaked orders can be obtained from each other by a sequence of transpositions of neighboring alternatives such that the resulting order remains single-peaked at each step; and it contains two completely reversed orders (namely, the orders that rank the alternatives in descending order from left to right and from right to left, respectively).

This paper's main result (Theorem 1) shows that, conversely, every minimally rich and connected Condorcet domain which contains at least one pair of completely reversed orders must be single-peaked. ${ }^{1}$ As is easily verified, any single-peaked domain contains at most one pair of completely reversed orders. We thus obtain as a corollary that, for any given pair of completely reversed orders, there is a unique maximal Condorcet domain that contains them and is minimally rich as well as connected: the domain of all orders that are single-peaked with respect to either one of the given pair of completely reversed orders (Corollary 1).

This result is remarkable in particular in view of the fact that quite a number of non-singlepeaked Condorcet domains have been identified in the literature, among others the domains satisfying Sen's 'value restriction' condition (Sen, 1966) with the 'single-dipped' domain (Inada, 1964) as a special case, the domains satisfying the so-called 'intermediateness' property (Grandmont, 1978; Demange, 2012), and the 'order-restricted' domains identified by Rothstein (1990); the latter domains are sometimes also referred to as the domains with the single-crossing property (Gans and Smart, 1996; Saporiti, 2009; Puppe and Slinko, 2017). Our analysis shows that none of these domains can jointly satisfy the three conditions of minimal richness, connectedness and the inclusion of a pair of completely reversed orders unless it is also single-peaked. In particular, a single-crossing domain can be minimally rich only if it is at the same time singlepeaked (Corollary 3).

The purpose of the present analysis is not to justify the assumption of single-peakedness per se and, in fact, the empirical evidence for single-peakedness is mixed, see the review of the literature below. The main argument put forward here is that, among all domains that guarantee consistency of pairwise majority voting, the single-peaked domain is distinguished by a remarkably simple set of additional requirements: connectedness, minimal richness and the existence of two completely reversed orders. The main conclusion to be drawn from the present analysis is

[^1]
https://daneshyari.com/en/article/7359060

Download Persian Version:
https://daneshyari.com/article/7359060

Daneshyari.com

[^0]: 4. I thank two anonymous referees and an associate editor for helpful comments and remarks. I am indebted to Tobias Dittrich and Michael Müller who provided excellent research assistance. Tobias Dittrich also created the figures based on a graphic tool developed by David McCooey. This work was presented in seminars at Higher School of Economics in Moscow, Université de Cergy-Pontoise, Université Paris Dauphine, the University of Glasgow, the University of Siena, TU Berlin, at the Workshop on Game Theory and Social Choice at Corvinus University Budapest, at the "Tagung des Theoretischen Ausschusses des Vereins für Socialpolitik" in Basel, at COMSOC conference in Toulouse, at ESEM conference in Lisbon, at the VfS conference in Vienna and at the Workshop on Social Choice in Lausanne. I am grateful to the participants for valuable discussion and comments. Special thanks to Jürgen Eichberger, Ulle Endriss, Martin Hellwig, Anke Gerber, Bettina Klaus, Gleb Koshevoy, Jérôme Lang, Jean-Francois Laslier, Bernard Monjardet, Hervé Moulin, Stefan Napel, Klaus Nehring, Rolf Niedermeier, Georg Nöldeke, Matias Nunez, Hans Peters, Marcus Pivato, Anup Pramanik, Ernesto Savaglio, Karl Schlag, Adi Shamir, Attila Tasnádi, Jörgen Weibull and Bill Zwicker for helpful comments and/or encouragement.
[^1]: ${ }^{1}$ In fact, as detailed in Section 2 below, the condition of connectedness can be substantially relaxed in this result to the condition that there exist one path that connects a pair of completely reversed orders.

