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Abstract

We model evolution according to an asymmetric game as occurring in multiple finite populations, one 
for each role in the game, and study the effect of subjecting individuals to stochastic strategy mutations. We 
show that, when these mutations occur sufficiently infrequently, the dynamics over all population states sim-
plify to an ergodic Markov chain over just the pure population states (where each population is monomor-
phic). This makes calculation of the stationary distribution computationally feasible. The transition prob-
abilities of this embedded Markov chain involve fixation probabilities of mutants in single populations. 
The asymmetry of the underlying game leads to fixation probabilities that are derived from frequency-
independent selection, in contrast to the analogous single-population symmetric-game case (Fudenberg and 
Imhof, 2006). This frequency independence is useful in that it allows us to employ results from the popu-
lation genetics literature to calculate the stationary distribution of the evolutionary process, giving sharper, 
and sometimes even analytic, results. We demonstrate the utility of this approach by applying it to a battle-
of-the-sexes game, a Crawford–Sobel signalling game, and the beer-quiche game of Cho and Kreps (1987).
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1. Introduction

In evolutionary game theory, games are played within populations, and the prevalence of 
different strategies changes over time according to natural-selection-like dynamics (Maynard 
Smith, 1982; Weibull, 1997; Hofbauer and Sigmund, 1998; Samuelson, 1998; Nowak, 2006;
Sandholm, 2010). This provides a natural method by which to model biological evolution 
(Maynard Smith, 1982) and various learning processes (Fudenberg and Levine, 1998), and offers 
a ‘rationality-light’ approach to equilibrium selection (Samuelson, 1998).

In the classical approach, populations are infinitely large and dynamics are deterministic; the 
focus is typically on the equilibrium refinement of evolutionary stability (Maynard Smith, 1982;
Hofbauer and Sigmund, 1998). More recently, stochastic finite-population dynamics have been 
introduced into evolutionary game theory (Foster and Young, 1990; Kandori et al., 1993; Young, 
1993; Nowak, 2006; Fudenberg and Imhof, 2006; McAvoy, 2015a). These often take the form of 
an ergodic Markov chain—for example, when there is a positive mutation rate—the state space 
of which is all possible strategy compositions of the population (Fudenberg and Imhof, 2006). 
Ranking the various population states’ weights in the stationary distribution is then a natural 
method of equilibrium selection (Foster and Young, 1990; Kandori et al., 1993), and solves many 
problems of the deterministic approach.

A drawback is that the state space is often very large, making calculation of the stationary 
distribution infeasible. Addressing this, Fudenberg and Imhof (2006) study the case of a sym-
metric game played within a single, finite population, and show that, when the mutation rate 
is very small, the evolutionary process simplifies significantly. The intuition is straightforward: 
Starting from a pure (monomorphic) population state, we wait a very long time for a new strat-
egy to appear in the population, because the mutation rate is small. When it does, it either goes 
extinct or takes over the population (‘fixes’). Because this resolution of the mutant’s fate occurs 
on a much shorter timescale than the waiting time for another mutation to occur, it typically re-
establishes a pure state. The process therefore approximates a simpler process over just the pure 
states. This dramatic reduction of the state space makes calculation of the stationary distribution 
computationally simple.

The transition probabilities of this simpler process depend critically on the various mutants’ 
fixation probabilities—the probability that a given strategy, having arisen in a population oth-
erwise pure for a different strategy, subsequently fixes in that population. Because the game is 
symmetric, the payoffs that determine these fixation probabilities are frequency dependent—the 
payoff to a mutant strategy changes as its frequency in the population increases. For most evolu-
tionary processes, frequency-dependent fixation probabilities either do not exist in closed form, 
or are intractable when they do (Nowak, 2006). This significantly limits the analytical use of 
Fudenberg and Imhof’s result.

Here, we employ the basic machinery of Fudenberg and Imhof (2006) to derive a result 
similar to theirs for asymmetric games. There are several reasons why such a result is desir-
able. First, many situations in which we might want to study evolutionary or learning dynam-
ics are best modelled as asymmetric games—for example, signalling games (Spence, 1973;
Crawford and Sobel, 1982; Grafen, 1990), games of entry and entry-deterrence (Salop, 1979;
Milgrom and Roberts, 1982; Maynard Smith and Parker, 1976), and games of time consistency 
and commitment (Kydland and Prescott, 1977). Second, because only strict Nash equilibria of 
asymmetric games are evolutionarily stable (Samuelson and Zhang, 1992), the deterministic 
approach based on evolutionary stability often fails. This is especially true for multi-stage asym-
metric games, which typically have no strict Nash equilibria (because alternative strategies that 
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