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a b s t r a c t

This paper presents a method for introducing carrier fringes in a double-aperture common-path
interferometer. By using the Fresnel diffraction theory, we demonstrated that the axial displacement
of the first lens of the 4f optical system involved is linearly proportional to the carrier frequency
introduced in the interferogram (both for positive or negative values) in a wide range. Because this
displacement is of the order of centimetres, its experimental generation is very simple, practical, and
with acceptable accuracy, being carried out by means of a non-sophisticated system. A theoretical model
and experimental results are shown.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction.

A double-aperture common-path interferometer (DACPI) con-
sists of a 4f optical imaging systemwith two apertures in the input
plane and a grating [1] in the Fourier plane, acting as a spatial filter
[2–4]. In order to observe the effect of interference in the image
plane, the distance between the two apertures must be equalled to
the product of the ruling period with the focal length of the lens
divided by the wavelength of the employed light. As known, a
transversal displacement of the grating produces a phase-step in
the interferogram [3,4], and on the other hand, as it was demon-
strated recently, an axial displacement of the grating produces
carrier fringes [5,6]. More recently, in our previous work [7] we
presented another method for introducing carrier fringes in a
DACPI, which was based on placing two additional rulings of
different periods, one ruling in each input aperture. We demon-
strated that the difference of periods is proportional to the carrier
frequency introduced in the interferogram. This way of introdu-
cing carrier fringes does not need to tilt the beam as typically done
with a tilted mirror [8], a wedge prism [9], or a tilted beam-splitter
[10]. The generation of carrier fringes is useful for phase extraction
as an alternative method of phase-shifting interferometry (PSI).
The Fourier-transform of an interferogram with carrier fringes
consists of three lobules separated by the value of the introduced
carrier frequency. The lobules do not overlap when the carrier

frequency is higher than the maximum frequency. Thus, any lobule
can be filtered and processed for phase, background and light
modulation retrieval. This method is known as carrier fringes
interferometry (CFI), and was first proposed by Takeda et al. [11].

In this paper, we propose an easy and practical method for
introducing carrier fringes in an interferogram with acceptable
accuracy. Because the technique does not generate a tilt between
the two beams, the common-path features of the system still
remain. This method is obtained from a modified version of a
DACPI that consists of displacing axially the first lens from its
initial plane while the length 4f between the input and image
planes is kept constant, as depicted in Fig. 1. In order to show how
this carrier is introduced, an analysis based on the Fresnel
diffraction theory [12] is applied in order to construct a mathe-
matical model of a properly modified DACPI.

2. Theoretical model

As it can be noted, two modules mounted in cascade form the
modified DACPI shown in Fig. 1. It is easy to see that each module
is a particular case of the scheme shown in Fig. 2, which consists of
two planes and a lens with focal length f40. This lens is placed at
a distance z1 from the object plane or input plane while the output
plane or observation plane is placed at a distance z2 from the lens.
So, the distance between these two planes is given by z1þz2.

An analysis of this basic system could be made by using the
transfer function of the lens given by exp½� iðk=2f Þðξ2þη2Þ� and by
calculating the diffracted field for each empty space between two
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planes using the Fresnel diffraction theory [8]. This gives,

tðξ;ηÞ ¼ 1
iλz1

ei
k

2z1
ðξ2 þη2Þ∬1dxdytAðx; yÞei

k
2z1

ðx2 þy2Þe� i kz1
ðξxþηyÞ ð1Þ

Eq. (1) describes the field at the plane immediately before of the
lens, that started as tAðx; yÞ at the input plane and travelled a
distance z1, λ is the wavelength of the light, and k¼ 2π=λ is the
wavenumber. Eq. (1) is known as the Fresnel diffraction integral
[12]. Then, multiplying the field described in Eq. (1) with the
transfer function of the lens and after recalculating the diffraction
calculation for the second empty space, it is possible to find that
the field at the output plane would be expressed as

~t ðu; vÞ ¼ 1
iλf e

ei
k

2f e
ð1� z1=f Þðu2 þv2Þ∬1dxdytAðx; yÞei

k
2f e

ð1� z2=f Þðx2 þy2Þe� iðk=f eÞðxuþyvÞ

ð2Þ

where f e ¼ z1þz2�z1z2=f . Note that, for z1 ¼ z2 ¼ f , it is easy to
see that f e ¼ f , and the quadratic phases in Eq. (2) are dropped, so
that Eq. (2) is reduced mathematically to the optical Fourier-
transform of the transmittance function tAðx; yÞ. Then, Eq. (2)
describes the Fresnel diffraction at the observation plane, which
becomes the Fraunhofer diffraction when the observation is made
at the focal length of the lens.

Now, if z1 ¼ f �Δf and z2 ¼ f þΔf are considered for the first
module in Fig. 1, then f e ¼ f þΔf 2=f is obtained, and substituting
these distances in Eq. (2), this expression is reduced to

which expresses the field just before the Ronchi ruling ~Rðu; vÞ,
while, ~t ðu; vÞ ~Rðu; vÞ is the field just after the Ronchi ruling, and is
considered as the input field for module 2. In this last module,
z1 ¼ z2 ¼ f is assumed, then f e ¼ f , and by substituting these
distances in Eq. (2) and changing the coordinates accordingly,

we have obtained the following expression

tðx0; y0Þ ¼ 1
iλf

∬1dudv~t ðu; vÞ ~Rðu; vÞ � e� iðk=f Þðux0 þvy0 Þ ð4Þ

where ~Rðu; vÞ has its grating lines running parallel to the v-axis.
With a fill factor of 1=2 and the grating period up, the ruling could
be modelled as ~Rðu; vÞ ¼ rectð2u=upÞ � ∑

n
δðu�nupÞ, where rectð:::Þ

is the rectangle function and the symbol � denotes the convolu-
tion operation. The same ruling in the form of complex Fourier
series could be written as

~Rðu; vÞ ¼ 1
2
∑
n
sinc

1
2
n

� �
ei2πðn=upÞu ð5Þ

Substituting Eqs. (3) and (5) into Eq. (4), it is possible to
demonstrate after several manipulations that the optical field in
the observation plane is given by

tðx0; y0Þ ¼ 1þΔf 2

f 2

 !
e
� ikΔf

2f2
1þΔf2

f2

� �
ðx02 þy02Þ

∑
n
cne

� iπn2 λΔf
uð2=pÞ 1þΔf2

f2

� �

ei2nπ
Δf
up f

x0 tA 1þΔf 2

f 2

 !
λf
up

n�x0
� �

� 1þΔf 2

f 2

 !
y0

 !
ð6Þ

where 2cn ¼ sincðn=2Þ and 1þΔf 2=f 2 is a scale factor that can be
approximated to unity since in the experiment the condition
Δf⪡f is obtained easily. Eq. (6) consists basically of inverted
replicas of the input optical disturbance tAðx; yÞ, where each replica
is situated at integer multiples of λf =up on x0-axis with its
amplitude scaled by the sinc function and a constant phase factor
depending on n2 and Δf , and a linear phase term on x0-direction
depending on n and Δf . Observe that if Δf ¼ 0, Eq. (6) is reduced
to a known result [1,2,] and Fig. 2 becomes the typical 4f optical
imaging system.

In order to carry out an interferometric analysis, the transmit-
tance function is considered to be of the form

tAðx; yÞ ¼w xþ1
2
x0; y

� �
Eoþw x�1

2
x0; y

� �
Er ð7Þ

where wðx; yÞ ¼ rectðx=awÞrectðy=bwÞ is a rectangular aperture of
sides aw and bw, x0 is the separation distance between two
apertures, which are separated symmetrically with respect to
origin. Omitting the coordinates of Es ¼ Aseiϕs with s¼ o; r denot-
ing the probe and reference beams: As and ϕs are their amplitude

Fig. 1. Modified double-aperture common-path interferometer, carrier fringes are generated when the first lens is placed outside of its initial plane by a distance Δf on axial
direction.

Fig. 2. Elemental optical system formed with a lens and two planes to explain a
modified DACPI in Fig. 1.

~t ðu; vÞ ¼ 1
iλ

f

f 2þΔf 2
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