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This paper proposes a conjugate Bayesian regressionmodel to estimate the covariancematrix of a
large number of securities. Characterizing the return generating process with an unrestricted fac-
tor model, prior beliefs impose structure while preserving estimator consistency. This framework
accommodates economically-motivated prior beliefs and nests shrinkage covariance matrix esti-
mators, providing a common model for their interpretation. Minimizing posterior finite-sample
square error delivers a fully-automated covariance matrix estimator with beliefs that become
diffuse as the sample grows relative to the dimension of the problem. In application, this Stein-
optimal posterior covariance matrix performs well in a large set of simulation experiments.
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1. Introduction

In economic applications such as portfolio diversification and forecast combination, agent decisions depend upon a large covari-
ance matrix summarizing the relationships between different returns or forecast errors. The sample size of the data available to the
decision maker is typically quite limited relative to the dimensionality of the problem considered. As such, the unbiased sample co-
variance matrix estimator proves too imprecise to be practically useful in these applications, as its variance is magnified through an
ill-posed optimization problem that yields highly unstable solutions.

The instability of the sample covariance matrix in portfolio diversification has been a long-studied topic since Markowitz (1952)
first proposed the problem. Some of the first efforts to impose structure on the covariance matrix estimate itself through a restricted
factor model were proposed in Sharpe (1963). Restricted factor models have evolved significantly since then to multi-factor models
with a statistically defined number of potential factors in Connor and Korajczyk (1993) and Bai and Ng (2002).1 A slightly different
approach focuses on minimizing the finite-sample Stein (1955) mean square error, with a series of papers by Ledoit and Wolf
(2003, 2004a,b) proposing shrinkage estimators that form a linear combination of the sample covariance matrix with a more
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structuredmodel. This paper relates most directly to the shrinkage estimation strategy, presenting a Bayesian likelihood-based foun-
dation of factor-based shrinkage models.

In parallel, a significant literature considers Bayesian analysis of the covariancematrix, anchored by the conjugate inverse-Wishart
model to evaluate the sampling properties of the posterior covariancematrix.2While Yang and Berger (1994) present reference priors
for the problem, a number of other researchers including Leonard and Hsu (1992) and Daniels and Kass (2001) have proposed infor-
mative priors that shrink the sample covariance matrix eigenvalues. Motivated by the difficulty interpreting the priors in these
settings, a number of other papers seek to impose structure using clustering or a hierarchical Bayesian model, such as the analysis
in Daniels and Kass (1999) and Liechty et al. (2004). Many of these techniques require MCMC simulation to characterize posterior
expectations, a mechanism that can be computationally infeasible in extremely large models.

This paper builds on the Bayesian approach by analyzing posterior expectations for the covariancematrix in the natural conjugate
settingwith a standard Normal-Gamma data generating process. The statistical model represents the data generating process as a de-
generate factor model, with a security's factor loading determining its covariances with other assets. The factors are not the focus of
inquiry in and of themselves, but rather only as amechanism for characterizing the structure of the covariancematrix. For this reason,
the analysis here treats the factors as fixed and observable, allowing for the number of factors to be potentially large. Conditional on
these factors, I introduce an asymptotically-negligible perturbation of the likelihood for easily characterizing posterior expectations.

Prior beliefs on the factor loadings combine with the data to yield a structured, well-conditioned posterior expectation that re-
mains consistent for the true covariance matrix. In the context where factors represent principal components of returns, I show the
eigenvalues and eigenvectors of the sample covariance matrix, respectively, correspond to the variance of a factor and the associated
vector of factor loadings across securities. Using this result, I show the posterior expected covariance matrix shrinks these eigenvec-
tors toward their prior expectations and scales the corresponding eigenvalues to preserve orthonormality. This shrinkage represen-
tation is readily generalized, allowing the Bayesian framework I propose to nest any additive shrinkage estimator through
empirically-determined priors.

As in Ledoit and Wolf (2004a), the shrinkage decomposition also facilitates deriving empirical prior beliefs to minimize finite-
sample expected loss. Subject to a bandwidth parameter that can be effectively chosen via a simulated optimization algorithm, the
Stein-optimal posterior covariancematrix is fully automated and easily implemented. This automation forgoes specifying a particular
shrinkage target as the model for prior beliefs and allows for more robust performance of the posterior covariance matrix across a
variety of settings. Recently, Ledoit and Wolf (2012) and Ledoit and Wolf (2013) have analyzed the nonlinear regularization of the
eigenvalues for covariance matrices under different loss functions. Further, Bai and Liao (2012) consider the problem of extracting
the principal components themselves in large problems. The exercise here considers a rather simpler question, focusing on solving
for the optimal shrinkage under Frobenius loss proposed in Ledoit and Wolf (2004a) in a more flexible class or estimators, allowing
for purely data-driven posterior regularization.

In application, the additionalflexibility allows the Stein-optimal posterior estimator to performeffectively in awider variety of set-
tings than any of the individual methodologies presented in Ledoit and Wolf (2004a). Both in terms of mean-square error and in a
portfolio optimization exercise, I show the Stein-optimal posterior performs aswell as any currently available estimator and oftenper-
forms better in a battery of simulation experiments. Though a given shrinkage estimators may perform better for specific data gener-
ating process, this performancemay not prove to extend to other settings. Aggregating across a variety of asset universes, the stability
of the Stein-optimal posterior's performance places it among the best estimators available in analyzing the covariances of returns in a
large set of assets.

2. Statistical model

This section develops the statistical model and derives posterior expectations for covariance matrices in a natural conjugate set-
ting. The key innovation here lies in representing the sample covariance matrix as an unrestricted N-factor model, using prior beliefs
in a structured factor model to impose structure in the posterior expectation of the covariance matrix.

The objective is to estimate the covariance matrix for the returns on N securities, r⋅,t = [r1,t, …, rN,t]', each of which are normally
distributed with known means μ = [μ1, …, μN]' and an unknown covariance matrix ∑. To represent these returns in a linear model,
assume that there are K observed factors F1,t, …, FK,t that represent all sources of variance across the securities and that these factors
have known covariancematrix Γ. As the analysis focuses on the properties of covariancematrix estimators given a set of factors, I treat
the factors as fixed and observable and ignore issues related tomodel identification. For example, these could correspond to the full set
of derived principal components, with K = N, though the present analysis ignores any estimation error in deriving these factors or
recovering their covariance matrix.

Assumption 1. The return generating process for returns satisfies the following conditions:

(a) r⋅,t ∼ N(μ, ∑), where μ is known but ∑ is unknown.
(b) F⋅,t = [F1,t, …, FK,t]′ ∼ N(μF, Γ), with both μF and Γ known.
(c) ri;� ¼ ri;1;…; ri;T

� �0∈S Fð Þ, the column space of the matrix F = [F⋅,1′ , …, F⋅,T′ ] for all i.

2 For examples, see Yang and Berger (1994) and Bensmail and Celeux (1996) for analyses based on the spectral decomposition of the matrix. Barnard et al. (2000)
propose another approach, deriving informative priors for the covariance matrix in terms of its correlations and standard deviations. Liu (1993), Pinheiro and Bates
(1996), and Pourahmadi (1999, 2000) can each be related to the Cholesky decomposition of the inverse of the covariance matrix, a device that is also used often in
the analysis of sparse statistical models.
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