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Many postulated relations in finance imply that expected asset returns strictly increase in an
underlying characteristic. To examine the validity of such a claim, one needs to take the entire
range of the characteristic into account, as is done in the recent proposal of Patton and
Timmermann (2010). But their test is only a test for the direction of monotonicity, since it
requires the relation to be monotonic from the outset: either weakly decreasing under the null
or strictly increasing under the alternative. When the relation is non-monotonic or weakly
increasing, the test can break down and falsely ‘establish’ a strictly increasing relation with
high probability. We offer some alternative tests that do not share this problem. The behavior
of the various tests is illustrated via Monte Carlo studies. We also present empirical
applications to real data.
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1. Introduction

Many postulated relations in finance imply that expected asset returns strictly increase in a certain characteristic. When the
assets are equities, examples of such characteristics are CAPM beta, book-to-market, size, momentum, and reversal. When the
assets are bonds, examples of such characteristics are maturity and rating quality. The search for new such characteristics is a
never-ending quest, partly in hopes of creating novel trading strategies to ‘beat the market’.

It is, therefore, of interest to test whether a particular characteristic indeed generates expected asset returns that are strictly
increasing. Say there are a total of N + 1 categories, ordered according to the underlying characteristic. The postulated relation
says that as one moves up from one category to the next, then the expected return should strictly increase. (The opposite case of
expected asset returns being supposedly monotonically decreasing can be handled analogously by simply multiplying all returns
by negative one or, alternatively, by reversing the order of the various return categories considered.)

For a long time, the standard in the field has been to simply test for a difference in expected returns between the highest and
the lowest return category. Such a test is easily carried out, since the parameter of interest is univariate, being the difference
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between two expected values. Therefore, a conventional t-test can be applied, though one has to account for potential serial
correlation of returns in computing the standard error that appears in the denominator of the test statistic.

A new test has been proposed recently by Patton and Timmermann (2010), abbreviated by PT henceforth. As they point out,
simply testing for a difference in expected returns between the highest and the lowest category can be misleading. It could
happen that the relation of expected returns is flat, or even decreasing, for intermediate return categories while a positive
difference ‘highest minus lowest’ still exists. In this case, providing sufficient data are collected, the simple t-test is likely to falsely
decide in favor of a strictly monotonic relation. Take the example of five return categories, ordered from lowest to highest, with
respective expected returns of 1.0, 1.5, 1.1, 1.4 and 1.6. In this example, the overall relation is non-monotonic, even though the
difference ‘highest minus lowest’ is positive.

Therefore, a more comprehensive approach is needed to establish a strictly monotonic relation over the entire range of return
categories. Whenmoving from one category up to the next, the difference in expected returns must be established as significantly
positive every time. In other words, all N expected return differentials ‘higher minus lower’ must be established as significantly
greater than zero. Such a test is more complex, since the underlying parameter is now an N-dimensional vector rather than a
univariate number.

A natural test statistic for the more comprehensive approach is obtained as follows. Compute individual t-test statistics for
each of the N expected return differentials, where in each case the alternative corresponds to the expected return differential
being positive. Then take the minimum of the individual test statistics as the overall test statistic. If the resulting min-t statistic is
‘sufficiently’ large, one decides in favor of a strictly monotonic relation. The statistical question is how to obtain a proper critical
value for this test. PT use a bootstrap method, resampling from a certain worst-case null distribution. Their proposed method is
based on the implicit assumption that if the relation is not strictly increasing, it must be weakly decreasing. That is, if the expected
return differentials are not all strictly positive, then they must be all weakly negative (meaning less than or equal to zero). As a
result, the test of PT is only a test for the direction of monotonicity, not for monotonicity itself, since monotonicity is assumed from
the outset.

While the assumption of monotonicity may hold for some applications, it certainly cannot be invoked always. When the true
relation is non-monotonic, or even increasing but only weakly instead of strictly, the PT test can break down and no longer
successfully control the rejection probability under the null. In fact, as shown in Remark B.1, its size can be arbitrarily close to one:
it can falsely decide in favor of the alternative of a strictly monotonic increasing relation with a probability arbitrarily close to one.
In this paper, we first discuss this problem of the PT test and then offer some alternative tests that do not share the problem and
are, therefore, safer to use in general settings.

Having said this, all the new tests we present have the choice of alternative hypothesis in common with the PT test. The
alternative postulates that a monotonic relation (in the sense of being strictly increasing) exists. In other proposals, this postulate
becomes the null hypothesis instead; for example, see Wolak (1987, 1989) and also Fama (1984). Such an approach is unnatural,
though, if the goal is to establish the existence of a monotonic relation. By not rejecting the null, one can never claim
(quantifiable) statistical evidence in favor of the associated hypothesis. Hence, we will not include such tests in our paper. For a
theoretical discussion of such tests and some examination of finite-sample performance, see PT.

The remainder of the paper is organized as follows. Section 2 describes the formal setup and the testing problem of interest.
Section 3 presents the various approaches for designing tests for monotonicity. Section 4 details how the various tests are
implemented in practice. Since the available data is assumed to be a multivariate time series, an appropriate bootstrap method is
used to calculate critical values in a nonparametric fashion. Section 5 examines finite-sample performance via Monte Carlo
studies. Section 6 contains empirical applications to real-life data. Finally, Section 7 concludes. Mathematical results are relegated
to the Appendix.

2. Formal setup and testing problem

Our notation generally follows the notation of PT. One observes a strictly stationary time series of return vectors rt ≡ (rt,0,rt,1,
…,rt,N)′ of dimension N + 1. The observation period runs from t = 1 to t = T, so the sample size is given by T. Denote the
expected return vector by μ ≡ (μ0,μ1,…,μN)′ and define the associated expected return differentials as

Δi ≡ μ i−μ i�1 for i ¼ 1;…;N: ð2:1Þ

To avoid any possible confusion, note that the characteristic according to which the N + 1 return categories are ordered is
always assumed to be predetermined and not data-dependent. We also introduce the following notation for the observed return
differentials:

dt ≡ dt;1;…;dt;N
� �

′ ≡ rt;1−rt;0;…; rt;Nþ1−rt;N
� �

′
: ð2:2Þ

Therefore, letting Δ ≡ (Δ1,…ΔN)′, one can also write Δ ¼ E dtð Þ:
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