EI SEVIER

Contents lists available at ScienceDirect

Sensors and Actuators A: Physical

journal homepage: www.elsevier.com/locate/sna

Short communication

Detection and photothermal actuation of microcantilever oscillations in air and liquid using a modified DVD optical pickup

Artūras Ulčinas^{a,*}, Loren M. Picco^b, Monica Berry^b, J.K. Heinrich Hörber^b, Mervyn J. Miles^b

- ^a Department of Nanoengineering, Center for Physical Sciences and Technology, Savanorių 231, 02300 Vilnius, Lithuania
- ^b H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK

ARTICLE INFO

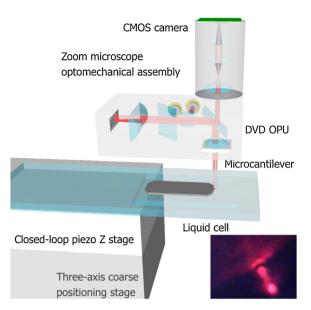
Article history: Received 8 October 2015 Received in revised form 13 May 2016 Accepted 11 July 2016 Available online 14 July 2016

Keywords: Micromechanical sensors Photothermal actuation Optical pickup

ABSTRACT

We report simple and low-cost setup based on a modified DVD optical pickup unit for detection and photothermal actuation of microcantilever oscillations. Small rectangular cantilevers (length 7 µm, width 3 µm and thickness 100 nm) were successfully actuated and detected in both air and liquid environments. Applications of such a setup for microcantilever-based biochemical and physical sensors and in atomic force microscopy are envisaged.

© 2016 Elsevier B.V. All rights reserved.


1. Introduction

Microfabricated cantilever beams are extensively used as sensing elements in various fields of science and technology. Examples include force transducers in atomic force microscopy (AFM) or mass transducers in bio- and chemical sensors or microand nanoelectromechanical systems. Sensing usually is achieved by detecting a change in static deflection or dynamic oscillation parameters of the microcantilever induced by the interaction force, deposited mass or uneven stresses between the two faces of the cantilever. Numerous techniques have been developed to register this change, including the optical beam deflection detection method commonly used in AFM, laser interferometry and capacitance measurements. As an alternative, optical pickup units (OPU) of compact disc (CD) and digital versatile disk (DVD) drives have been employed for detection of the microcantilever displacement [1–3]. This approach is particularly attractive because of their low-cost, off-the-shelf availability and small form-factor. As reported in [4], the astigmatic detection system common to most CD and DVD OPUs allows to register both linear displacement of the microcantilever with sub-nm resolution as well as two-dimensional angular displacements. Applications of such transducers as the basis of AFM instruments [5] as well as in scalable biomolecular sensing systems [6] are under investigation.

Further advantages of the DVD OPU are small (close to diffraction limit) spot size of the laser, availability of two slots for laser diodes with almost identical beam paths, and high bandwidth of the photodetector and preamplifier (hundreds of MHz). Combination of these factors makes a DVD OPU an attractive candidate as a detection system for use with small microcantilevers (length and width in the order of microns) in dynamic mode, where the resonant frequency shift of the beam due to the added mass is detected. Small cantilevers are expected to afford higher sensitivity due to their lower mass leading to the relative increase of added/sensor mass ratio [7]. Of special interest is the possibility to perform such experiments directly in fluid without intermediate drying step which may lead to denaturation of the functional and analyte molecules and uncertain amount of residual water on the cantilever. This is complicated due to the high viscous damping these cantilevers are experiencing which in turn requires significant excitation energy. In the most common mode of mechanical excitation (shaking the holder), numerous mechanical resonances of the system (known as the "forest of peaks") are excited, which are related to coupling among the cantilever, the fluid and the mechanical assembly [8]. One of the most successful approaches which allows elimination of this problem is photothermal actuation where the cantilever bending is actuated by the local heating of the cantilever base and is due to the difference of thermal expansion coefficients between the materials of the cantilever and the coating used to increase the reflectivity of its surface [9,10]. A simultaneous detection and photothermal actuation of the microcantilevers using a DVD OPU has not yet been reported. Here, we

^{*} Corresponding author.

E-mail address: ulcinas@ftmc.lt (A. Ulčinas).

Fig. 1. Schematic representation of the experimental setup. Inset: optical microscopy image of the detection and actuation laser beams aligned on the microcantilever.

report the use of DVD OPU-based scheme for detection and independent photothermal actuation (PA) of small microcantilevers.

2. Experimental

The following modifications of commercial DVD OPU were essential in achieving simultaneous detection and actuation: firstly, two independent laser diode drivers (LDDs) to power the laser diodes (LDs) were implemented. Secondly, because the lens in the OPU is not chromatically corrected, it does not permit the use of the laser diodes with the significantly different wavelengths followed by optical filtering. To circumvent this limitation, one of the original laser diodes in the OPU (CD laser diode, 783 nm) was replaced with 650 nm laser diode in order to reduce the difference in the position of focus. Thirdly, a square waveform was used to drive the photothermal actuation laser to reduce the crosstalk between the signals from the reflected detection and photothermal actuation beams.

A schematic diagram of our experimental setup is shown in Fig. 1. Modified DVD OPU (OPU66.30, Philips) was mounted on the stand fixed to a rotation stage for adjustment of angular position of two laser spots with respect to the cantilever beam axis. The cantilever chip was mounted in a liquid cell made by cutting a chamber and inlet-outlet channels into the glass slide by gluing to the bottom of the chamber using UV-curable optical adhesive. The liquid cell was then sealed by gluing a glass coverslip on the top of the chamber using the same adhesive. It was finally mounted on the closed-loop single axis translation stage (P-753.1CD, Physik Instrumente) attached to the three-axis translation stage for coarse positioning of the cantilever with respect to the DVD OPU. The optical microscope with zoom lens (Zeiss) was used for alignment of the laser spots on the cantilever. A photograph of the mechanical assembly is shown in Fig. 2.

Laser diode drivers were built using WLD3343 ICs (Wavelength Electronics Inc.) with manufacturer-reported bandwidth of 2 MHz. A waveform used to drive the photoactuation laser diode was supplied by lock-in amplifier (LIA) (7280, Signal Recovery) oscillator output. The DVD laser diode (658 nm) was focused on the free end of the cantilever for detection of the cantilever oscillations. The focusing error electrical signal derived from astigmatic detection system of the DVD OPU as described in the literature [1–4] was used to monitor the vertical displacement of the

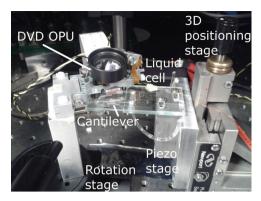


Fig. 2. Photograph of main parts of the experimental setup.

microcantilevers. Detection sensitivity in the linear range was calibrated for every experiment by vertically moving the cantilever using the closed-loop piezostage. Typical detection sensitivity in our experiments was 1 mV/nm. The photothermal actuation laser diode (RLD65PZB5, Rohm) spot was positioned on the base of the cantilever by moving the laser diode holder. Owing to the difference in wavelengths of the two beams, the photothermal actuation beam was focused slightly above the cantilever plane, resulting in broader spot of approximately 6 μ m diameter at the plane of the cantilever base (inset in Fig. 1). On the photodetector, this beam produced a diffuse spot off the center of the photodetector, thus reducing the resulting undesirable electrical signal. The cantilever vertical displacement amplitude and phase frequency sweeps were taken using the LIA and recorded using the custom data acquisition and control software designed in LabVIEW (National Instruments).

Tipless cantilevers marketed as "special development" and made from undisclosed "quartz-like" material with manufacturer-reported values of length 7 μm , width 3 μm , thickness 0.1 μm and resonant frequency in air 1.5 MHz (SD-USC-TL-1.5, Nanosensors) were used in our experiments. These dimensions are at least an order of magnitude smaller than the cantilevers conventionally used for AFM or nanomechanical biochemical sensor applications. Cantilevers had 20 nm Au coating on the detector side.

To evaluate the applicability of this detection and actuation scheme for biochemical sensing, an experiment to detect the presence of interleukin-6 (IL6) in the human blood plasma sample was devised. Cantilevers were functionalized as follows. The reflective gold coating on the cantilever was used to bind antibodies over a maximal surface, using a well-known Au-thiol chemistry. A thiolated molecule (avidin-thiol) was used, to make use of antibodies provided in a typical sandwich enzyme-linked immunosorbent assay (ELISA) kit, and to orient antibodies with their Fab arms towards the solution. Biotinylated antibodies specifically bind to avidin, neutravidin or streptavidin. These lectins, small molecules similar in molecular weight to avidin, tolerate a range of pHs including physiological. Binding of lectin to the cantilever results in a dense covering of antibodies, with a stoichiometry of 4:1.

Avidin-thiol (Protein Mods, Madison, WI, USA) was applied at $10\,\mu g/mL$ and incubated for $10\,min$ with the Au surface. Antibodies to IL6 (human IL6 ELISA Ready-Set-Go, Ebioscience) were applied at $2.5\,\mu g/mL$, and incubated with the gold surface for $30\,min$. Each incubation was followed by three 1-min washes with phosphate buffer solution (PBS) pH 7.4. A $10\,min$ incubation with Magic Blocker (Candor Bioscience GmbH) to reduce the non-specific binding was intercalated between functionalization and exposure for $15\,min$ to normal blood plasma spiked with IL6 biomarker standard. IL6 concentration was $200\,pg/ml$, the level correlating with the sepsis condition [11]. After the exposure to plasma, PBS was flown exhaustively through the liquid cell containing the cantilever. The cantilever amplitude-frequency sweeps were recorded in PBS both

Download English Version:

https://daneshyari.com/en/article/736489

Download Persian Version:

https://daneshyari.com/article/736489

<u>Daneshyari.com</u>