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a b s t r a c t

We present examples of a parameterized optimization problem, with a continuous objective function
differentiable with respect to the parameter, that admits a unique optimal solution, but whose optimal
value function is not differentiable. We also show independence of Danskin’s and Milgrom and Segal’s
envelope theorems.
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1. Introduction

Parameterized optimization problems are ubiquitous in eco-
nomics, from classical price theory to dynamic macroeconomics,
game theory, mechanism design, and so on. There, the envelope
theorem serves as a standard tool in understanding the marginal
effects of changes in the parameter, such as price or technology,
on the value of the optimal choice of the agents in the model.
While textbook envelope theorems usually only derive a formula
(‘‘envelope formula’’) that the derivative of the value function,
the optimal value as a function of the parameter, should satisfy
under the (often implicit) assumption that the value function is
differentiable, a rigorous statement of the theorem also describes
a sufficient condition on the primitives under which this assump-
tion holds true. The latter issue, the differentiability of the value
function, is what we are concerned with in this paper.

We consider the following setting. Let X be a nonempty topo-
logical space (the choice set), and A ⊂ R a nonempty open set (the
parameter space). The objective function f : X × A → R is to be
maximized with respect to x ∈ X , given α ∈ A. The optimal value
function is given by

v(α) = sup
x∈X

f (x, α),
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associated with the optimal solution correspondence

X∗(α) = {x ∈ X | f (x, α) = v(α)},

where we assume that the partial derivative of f with respect to
α, fα , exists and that X∗(α) ̸= ∅ for all α ∈ A. We are interested
in the differentiability of the value function v (in the classical
sense, rather than notions such as directional differentiability or
subdifferentiability).

1. If v is assumed to be differentiable at α = ᾱ, then it is easy to
derive the envelope formula: for any x̄ ∈ X∗(ᾱ),

v′(ᾱ) = fα(x̄, ᾱ).

Indeed, fix any x̄ ∈ X∗(ᾱ). Then the function g(α) = f (x̄, α)−
v(α), which is differentiable at ᾱ, is maximized at ᾱ, so the
first-order condition g ′(ᾱ) = 0 yields the formula.

2. One can easily construct an example in which the value
function is not differentiable when there are more than one
solutions. For example, let X = R and A = (−1, 1), and
consider

f (x, α) = −
1
4
x4 −

α

3
x3 +

1
2
x2 + αx −

1
4
,

with fx(x, α) = −(x + 1)(x + α)(x − 1). Then we have

v(α) =
2
3
|α|, X∗(α) =

{
{−1} if α < 0,
{−1, 1} if α = 0,
{1} if α > 0,

where v is not differentiable at α = 0, for which there are
two optimal solutions.
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3. The question we ask in this paper is: is the value function
always differentiable when the optimal solution is unique
(and the objective function is continuous and the solution
correspondence admits a continuous selection)? The answer
is no: we present in Section 2 an example in which fα exists
and X∗ is a single-valued continuous function, but neverthe-
less v is not differentiable at some ᾱ (Example 2.1). Themain
feature in our example is that fα is not continuous at (x, α) =

(x̄, ᾱ), where {x̄} = X∗(ᾱ). In fact, if X∗ admits a selection
continuous at ᾱ and fα is continuous jointly in (x, α) at (x̄, ᾱ),
then v must be differentiable at ᾱ (Proposition 2.1).

Numerous forms of sufficient conditions for the differentiability
of the value function have been obtained in the literature. In
Section 3, we discuss the results by Danskin (1966, 1967) and
Milgrom and Segal (2002). Danskin’s theorem also assumes the
continuity of fα , and when applied to the case where the optimal
solution is unique, his assumptions are slightly stronger than those
in Proposition 2.1 mentioned above, while they are not nested in
general. Our Example 2.1 illustrates that the continuity of fα is
indispensable also in Danskin’s theorem.

Milgrom and Segal (2002, Theorem 3) provide a sufficient con-
dition in terms of the equidifferentiability of the objective function
f . It turns out that our example does not satisfy this condition.
We present examples that illustrate that neither of the continuity
of fα at (x̄, ᾱ) and the equidifferentiability of {f (x, ·)}x∈X implies
the other, showing that the conditions in Danskin’s theorem, or
our Proposition 2.1, and those in Milgrom and Segal’s theorem are
independent from each other.

It has been known that certain convexity/concavity conditions
allow the differentiability of the value function. For instance, the
support function of a closed convex set in a finite-dimensional
space, examples of which include the profit, cost, and expenditure
functions in price theory, is differentiable if and only if the maxi-
mum (or minimum) is attained at a single point; see Mas-Colell et
al. (1995, Proposition 3.F.1) or Rockafellar (1970, Corollary 25.1.3).
In this case, the partial derivative of the objective function with
respect to the parameter is clearly continuous. In fact, we show in
Section 5.1 that this theorem, well known from convex analysis,
also follows from (a multidimensional parameter version of) our
envelope theorem Proposition 2.1, despite the possible unbound-
edness of the choice set. If the objective function f is concave jointly
in the choice variable x and the parameter α and if fα exists, then
the value function, which is necessarily concave, is always differ-
entiable; see Hogan (1973), Benveniste and Scheinkman (1979), or
Milgrom and Segal (2002, Corollary 3). For this result, topology is
not needed for the choice set (only being a convex subset of a linear
space), and hence the continuity of fα is irrelevant.

In Section 4, we extend our example to optimization problems
with inequality constraints that vary with the parameter α. We
provide examples with a binding constraint in which the Lagrange
function L is differentiable in α and the optimal solution and the
Kuhn–Tucker vector (which constitute a saddle point of L) are
unique and continuous in α, but the optimal value function is
not differentiable. Again, in these examples, Lα fails to be contin-
uous: in fact, if a function L(x, y, α) has a saddle point selection
(x̄(α), ȳ(α)) that is continuous in α and Lα is continuous in (x, y, α),
then its saddle value function L(x̄(α), ȳ(α), α) is differentiable in
α (Proposition 4.1). We also observe that if the value function
of the constrained problem is concave, then the existence of a
continuous selection of Kuhn–Tucker vectors is sufficient for the
differentiability (Proposition 4.3).1

In Section 5, we apply our analysis within the context of price
theory. Section 5.1 considers the profit function (or the support

1 This result extends Corollary 3 in Milgrom and Segal (2002) to the case of
parametric constraints. See also Marimon and Werner (2016).

function) for a closed convex production set, where, as mentioned,
we present a proof for its differentiability that uses our Proposi-
tion 2.1. Section 5.2 concerns the value functions for consumption
choice. We first state envelope theorems derived from Proposi-
tion 2.1 for the indirect utility function and the expenditure func-
tion: if the utility function is continuous and locally nonsatiated
and has partial derivativeswhich are continuous and nonvanishing
at the optimum, then these functions are differentiable whenever
the optimal solutions are unique. Then, extending our main exam-
ple into this framework, we construct an example of a continuous
utility function with positive partial derivatives for which, for
some fixed price vector, the Walrasian and Hicksian demands are
unique and continuous in wealth w and required utility u, but the
indirect utility and expenditure functions fail to be differentiable
in w and u, respectively. In this example, the partial derivatives
of the utility function are not continuous, demonstrating that the
continuous differentiability condition cannot be replaced with the
mere existence of partial derivatives for the differentiability of the
value functions in this case as well.

2. (Non-)Differentiability of the value function

Let X be a nonempty topological space, and A ⊂ R a nonempty
open set. Given the objective function f : X × A → R, we consider
the optimal value function

v(α) = sup
x∈X

f (x, α),

associated with the optimal solution correspondence

X∗(α) = {x ∈ X | f (x, α) = v(α)}.

We are interested in the differentiability of v when X∗ is point-
valued. We first state a sufficient condition of direct relevance for
our study.

Proposition 2.1. Assume that

(a) X∗ has a selection x∗ continuous at ᾱ, and
(b) f is differentiable in α in a neighborhood of (x∗(ᾱ), ᾱ), and fα is

continuous in (x, α) at (x∗(ᾱ), ᾱ).

Then v is differentiable at ᾱ with v′(ᾱ) = fα(x∗(ᾱ), ᾱ).

Assumption (a) holds if X∗ is nonempty-valued and upper semi-
continuous (which holds true, e.g., when f is continuous and X is
compact) and X∗(ᾱ) is a singleton, in which case any selection of
X∗ is continuous at ᾱ.

A version of this proposition is found in the lecture notes by
Border (2015, Corollary 299). For completeness, we present the
proof in Appendix A.1.

Our main observation in this paper is that, even when there is
a unique optimal solution, the differentiability of v may fail if one
drops the continuity of fα .

Proposition 2.2. There exists a continuous function f : X × A → R
such that

(a) X∗(α) is a singleton for all α and is continuous in α (as a single-
valued function), and

(b) f is differentiable in α,

but v is not differentiable at some α.

In the following, we present an example of such a function f .
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