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a b s t r a c t

A Nash equilibrium of a normal-form game G is essential if it is robust to perturbations of G. A game is
essential if all of its Nash equilibria are essential. This paper provides conditions on the primitives of a
(possibly) discontinuous game that guarantee the generic existence of essential games. Unlike the extant
literature, the present analysis allows for perturbations of the players’ action spaces, in addition to the
standard payoff perturbations.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

A Nash equilibrium of a normal-form game G is essential if it is
robust to perturbations of G. For generic games in the collection of
all finite-action games with fixed action spaces, all Nash equilibria
are essential (cf. Wu and Jiang, 1962). This result has been ex-
tended to infinite-action games (e.g., Yu, 1999, Carbonell-Nicolau,
2010, 2015, and Scalzo, 2013). Yu (1999) allows for perturbed
action spaces and payoff functions, but requires continuity of pay-
off functions. Carbonell-Nicolau (2010, 2015) and Scalzo (2013)
allow for discontinuous payoffs but require fixed action spaces. In
this paper we extend the results in Carbonell-Nicolau (2010) by
allowing for perturbed payoffs and actions.

The notion of perturbed game used in this note differs from
the definition adopted in Yu (1999). We argue in Section 2 that,
in the presence of payoff discontinuities, perturbing actions and
payoffs as in Yu (1999) poses problems. In fact, under Yu’s approach
it is easy to construct games whose perturbations do not include
strategies that are of particular strategic significance to the players.
Our discussion in Section 2 is framed in terms of a very simple
example, which showcases the difficulties of the Yu approach and
illustrates the intuitive appeal of the definition of a perturbed game
proposed here.

✩ In memory of Nathan Wohl. Thanks to the anonymous referees and Rich
McLean for valuable comments.
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2. Preliminaries

Anormal-formgame (or simply a game)G = (Xi, ui)Ni=1 consists
of a finite numberN of players, a nonempty set of actionsXi for each
player i, and a payoff function ui : X → R for each player i defined
on the set of action profiles X := ×

N
j=1Xj.

For each player i, let Xi be a nonempty, compact, convex subset
of a metric vector space. Let X := ×

N
i=1Xi be endowed with

the associated product topology. The sets X1, . . . , XN will be fixed
throughout the analysis. Let B(X) denote the set of bounded maps
f : X → R. LetK (Xi) denote the hyperspace of nonempty, compact,
and convex subsets of Xi. Define

GX :=
(
×

N
i=1K (Xi)

)
× B(X)N .

A typical member of GX is denoted (Y , u) = (Y1, . . . , YN , u1,
. . . , uN ) and can be viewed as a normal-form game (Yi, ui|×N

j=1Yj
)Ni=1.

In Yu (1999), the space B(X)N is endowed with the metric γX :

B(X)N × B(X)N → R defined by

γX ((u1, . . . , uN ), (v1, . . . , vN )) :=

∑
i∈N

sup
x∈X

|ui(x) − vi(x)|, (1)

and, for each i, the space K (Xi) is endowed with the Hausdorff
metric topology. The associated productmetric spaceGX , endowed
with the corresponding product topology, constitutes the space of
games considered in Yu (1999). This topology defines the notion
of perturbed game used in Yu (1999), and we wish to argue here
that this notion is not appropriate in the presence of payoff dis-
continuities. To illustrate, consider the one-person game ([0, 1], u),
where u(x) := 0 if x ∈ [0, 1) and u(1) := 1, and the sequence
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[0, 1 −

1
n ], u

)
, which converges to ([0, 1], u). Arguably, the strat-

egy x = 1, which dominates every other strategy, is particularly
important in this game, and it seems hard to justify an approx-
imation that does not include this strategy or another strategy
that plays a similar role. In particular, the games ([0, 1], u) and(
[0, 1 −

1
n ], u

)
appear markedly dissimilar, even for large n, and

the sequence
(
[0, 1 −

1
n ], u

)
does not seem to well-approximate

([0, 1], u).1 By contrast, the sequence
(
[0, 1 −

1
n ], v

n
)
, where

vn(x) := 0 if x ∈ [0, 1 −
1
n ) and vn(x) := 1 −

1
n if x ∈ [1 −

1
n , 1]

seems to better approximate ([0, 1], u) (for large n). Note that for
the above topology, while the sequence

(
[0, 1 −

1
n ], u

)
converges

to ([0, 1], u), the sequence
(
[0, 1 −

1
n ], v

n
)
does not converge to

([0, 1], u). In the next paragraph, we define a topology that is
consistent with the idea that games of the form

(
[0, 1 −

1
n ], v

n
)

are close to ([0, 1], u) (for large n) while games of the form(
[0, 1 −

1
n ], u

)
are not.2

Given i and {Yi, Zi} ⊆ K (Xi), let H(Yi, Zi) be the set of all
homeomorphisms hi from Yi to Zi such that hi(A) ⊆ Zi is convex if
and only if A ⊆ Yi is convex. Let dX be a compatiblemetric for X . Let
GX represent the set of normal-form games (Yi, ui|×N

j=1Yj
)Ni=1 such

that (Y , u) ∈ GX . Note that a member of GX uniquely determines
a corresponding element of GX , while there is a one-to-many
mapping between GX and GX . For the members of GX , we write
(Yi, ui|×N

j=1Yj
)Ni=1 and (Y , u) indistinctly, which entails a slight abuse

of notation. Define the map αX : GX × GX → R ∪ {∞} by

αX ((Y ,u), (Z, v))

:= inf

{
ϵ > 0 : ∃h ∈ ×

N
i=1H(Yi, Zi) :

N∑
i=1

sup
x∈Y

|ui(x) − vi(h(x))| ≤ ϵ and sup
x∈Y

dX (h(x), x) ≤ ϵ

}
,

if ×N
i=1H(Yi, Zi) ̸= ∅, and αX ((Y , u), (Z, v)) := ∞ if ×N

i=1H(Yi, Zi) =

∅. Nowdefine themetricρX : GX×GX → R byρX ((Y , u), (Z, v)) :=

min {αX ((Y , u), (Z, v)), 1}.3 Throughout the sequel, we endow GX
with the metric ρX .

Remark 1. As illustrated by the previous example, the metric ρX
differs from the Yu metric. This discrepancy can even be found
within the subdomain of continuous games. Indeed, for X := [0, 1]
and arbitrary u, the sequence of games ([0, 1

n ], u) in GX converges
to ({0}, u) in the sense of Yu, and yet this sequence does not
converge with respect to ρX in GX because none of its members
is homeomorphic to the game ({0}, u). Thus, convergence in the
sense of Yu need not imply convergence with respect to ρX . The
converse assertion is also true, as illustrated by the discontinuous
game from the previous example.

Definition 1. A correspondence Φ : A ⇒ B between topological
spaces is upper hemicontinuous at x ∈ A if the following condition
is satisfied: for every neighborhood VΦ(x) of Φ(x) there is a neigh-
borhood Vx of x such that y ∈ Vx implies Φ(y) ⊆ VΦ(x). Φ is upper
hemicontinuous if it is upper hemicontinuous at every point in A.

1 The idea that ‘‘good’’ approximations to an infinite discontinuous game should
include strategies that are of particular strategic significance to the players is
already discussed in Simon (1987) and Reny (2011) in the context of finite strategic
approximations to infinite games.
2 This is in fact an example in which a game with a dominant strategy can only

be approximated, in the new topology, by games with a dominant strategy. This is
obviously false about the Yu topology. We conjecture that this property holds in
general, and we thank an anonymous referee for bringing up this point.
3 It is easily seen that ρX ((Y , u), (Z, v)) = 0 ⇔ (Y , u) = (Z, v) for all (Y , u) and

(Z, v) in GX . Also, it is clearly the case that ρX ((Y , u), (Z, v)) = ρX ((Z, v), (Y , u))
for all (Y , u) and (Z, v) in GX . To verify that the triangle inequality holds for ρX ,
fix (Y , u), (Y ′, u′), and (Y ′′, u′′) in GX and note that given h1

∈ ×
N
i=1H(Yi, Y ′

i ) and

Definition 2. A correspondence Φ : A ⇒ B between topological
spaces is lower hemicontinuous at x ∈ A if the following condition
is satisfied: for every open set V ⊆ B with V ∩ Φ(x) ̸= ∅ there is a
neighborhood Vx of x such that y ∈ Vx implies Φ(y) ∩ V ̸= ∅. Φ is
lower hemicontinuous if it is lower hemicontinuous at every point
in A.

Definition 3. A strategy profile x = (xi, x−i) in X is a Nash
equilibrium of G = (Xi, ui)Ni=1 if ui(yi, x−i) ≤ ui(x) for every yi ∈ Xi
and i.

One can define the Nash equilibrium correspondence as a set-
valued map

EX : GX ⇒ X

that assigns to each game (Y , u) in GX the set of Nash equilibria of
(Y , u), EX (Y , u). Given a family of gamesG ⊆ GX , the restriction of
EX to G is denoted by EX |G.

Definition 4. Given a class of games G ⊆ GX , a Nash equilibrium
x of (Y , u) ∈ G is an essential equilibrium of (Y , u) relative to G
if for every neighborhood Vx of x there is a neighborhood V(Y ,u) of
(Y , u) such that for every (Z, f ) ∈ V(Y ,u) ∩ G, Vx ∩ EX (Z, f ) ̸= ∅.

Definition 5. Suppose thatG ⊆ GX . A game (Y , u) inG is essential
relative to G if every pure-strategy Nash equilibrium of (Y , u) is
essential relative toG. When the domain of reference is clear from
the context, we shall simply say that (Y , u) is an essential game.

Remark 2. Suppose that G ⊆ GX . A game (Y , u) in G is essential
relative to G if and only if EX |G is lower hemicontinuous at (Y , u).

3. The results

The following definition was introduced in Barelli and Soza
(2009).

h2
∈ ×

N
i=1H(Y ′

i , Y
′′

i ),

N∑
i=1

sup
x∈Y

|ui(x) − u′′

i (h
2(h1(x)))| =

N∑
i=1

sup
x∈Y

|ui(x) − v′′

i (x)|

≤

N∑
i=1

sup
x∈Y

|ui(x) − v′

i (x)|

+

N∑
i=1

sup
x∈Y

|v′

i (x) − v′′

i (x)|

=

N∑
i=1

sup
x∈Y

|ui(x) − u′

i(h
1(x))|

+

N∑
i=1

sup
x∈Y

|u′

i(h
1(x)) − u′′

i (h
2(h1(x)))|

=

N∑
i=1

sup
x∈Y

|ui(x) − u′

i(h
1(x))|

+

N∑
i=1

sup
x∈Y ′

|u′

i(x) − u′′

i (h
2(x))|,

where v′

i : Y → Y ′ and v′′

i : Y → Y ′′ are defined by

v′

i (x) := u′

i(h
1(x)) and v′′

i (x) := u′′

i (h
2(h1(x))),

and

sup
x∈Y

dX (h2(h1(x)), x) ≤ sup
x∈Y

dX (h1(x), x) + sup
x∈Y

dX (h2(h1(x)), h1(x))

= sup
x∈Y

dX (h1(x), x) + sup
x∈Y ′

dX (h2(x), x).

Consequently, αX ((Y , u), (Y ′′, u′′)) ≤ αX ((Y , u), (Y ′, u′)) + αX ((Y ′, u′), (Y ′′, u′′)) and
so ρX ((Y , u), (Y ′′, u′′)) ≤ ρX ((Y , u), (Y ′, u′)) + ρX ((Y ′, u′), (Y ′′, u′′)). Thus, ρX is
indeed a metric on GX .
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