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a b s t r a c t

Aggregation is an often used tool in finance and macroeconomics, whereby economic equilibrium in
a heterogeneous trader economy is characterized by means of the first order optimality conditions
of a representative agent. In this paper we study the conditions under which a representative agent
exists, and investigate the implications for the existence of equilibrium. The approach applies to markets
which are incomplete, includingmarkets with trading constraints, heterogeneous beliefs, and differential
information.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Aggregation is an often used tool in finance and macroeco-
nomics for characterizing an economic equilibrium in a hetero-
geneous trader economy; see Back (2010) and Ljungqvist and
Sargent (2004). Aggregation implies the existence of a represen-
tative agent, whose first order conditions characterize aggregate
consumption and the economy’s state price density. This represen-
tation simplifies the characterization of equilibrium, thereby facil-
itating understanding and empirical estimation. It is well known
that aggregation is possible in a heterogeneous trader economy
when the equilibrium allocation is Pareto optimal, which occurs
if the market is complete or when preferences satisfy linear risk
tolerance (see Back (2010, Chapter 7) and Skiadas (2009, Chap-
ter 3)). It is less well known, however, that the existence of a repre-
sentative agent exists under a much weaker set of conditions. This
occurs when the representative agent’s aggregate utility function’s
weightings across the heterogeneous traders’ utility functions are
state dependent.

In dynamic stochastic economies, the representative agent
paradigm has been an important construct for proving the exis-
tence of Radner (1972) equilibrium in complete markets; see An-
derson and Raimondo (2008), Horst et al. (2010), Hugonnier et al.
(2012), Riedel and Herzberg (2013), and Kramkov (2015). Perhaps
more important, however, has been its use in proving the existence
of Radner equilibrium in incomplete markets. In this regard, the
representative agent approach with stochastic aggregate utility
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function weights was first employed by Cuoco and He (1994), and
later used by Basak and Cuoco (1998), Basak (2000), Hugonnier
(2012), Hugonnier and Prieto (2015), Cheridito et al. (2015),
and Jarrow (2017) to prove the existence of equilibrium in contexts
where alternative approaches have not yet proven successful.

The purpose of this paper is twofold: (i) to study the conditions
on a heterogeneous trader economy where a representative agent
exists, and (ii) to prove a general equilibriumexistence theorem for
a heterogeneous trader economyusing the existence of a represen-
tative agent equilibrium. This extended approach to the existence
of a representative agent equilibrium applies to markets which are
incomplete, including markets with trading constraints, heteroge-
neous beliefs, anddifferential information.Weprove three key the-
orems in this paper. The first two theorems, in conjunction, provide
a weak set of sufficient conditions for the existence of a repre-
sentative agent equilibrium that reflects the aggregate demands
and equilibrium price process of a heterogeneous trader economy.
The third theorem gives a minimal set of sufficient conditions,
together with the existence of a representative trader equilibrium,
that imply the existence of an equilibrium in a heterogeneous
trader economy. These theorems generalize earlier results in the
literature mentioned in the preceding paragraph.

Let us briefly outline the approach and indicate why the proofs
go through in the very general setting that we consider. The initial
observation is that a numeraire invariance result can be proved
under minimal conditions, in particular without any self-financing
assumption and allowing for general markets and trading con-
straints; see Proposition 3.3. This suggests a natural notion of state
price deflator, given in (3.4),whichnests standarddefinitions.With
this notion, a budget constraint inequality is easily obtained for any
admissible strategy; see Proposition 3.7. Again, trading constraints
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are general, as are the cumulative endowments and dividends. This
inequality turns out to be strong enough to prove that, given an
equilibrium allocation, the aggregate consumption is optimal for
the representative investor; see Theorem 4.8. A key observation
is that the converse of Proposition 3.7 is never needed. Such a
converse statementwould assert that a strategywhich satisfies the
budget constraint is necessarily admissible, and would be difficult
or impossible to prove at the required level of generality. The
budget constraint inequality is also the crucial ingredient in the
proofs of Theorems 4.9 and 4.10, which however also rely on
results from convex and set-valued analysis.

An outline for this paper is as follows. Sections 2 and 3 present
themodel structure. Section 4 presents the first two theorems that
provide sufficient conditions for the existence of a representative
agent equilibrium, and explores existence of economic equilibrium
in a heterogeneous trader economy. Section 5 concludes.

2. Preliminaries

Throughout this paper we fix a stochastic basis (Ω, F ,F,P),
i.e. a filtered probability space whose filtration F is right-
continuous; see Jacod and Shiryaev (2003, Definition I.1.2). The
following standard notation will be used:

• The space of m-dimensional semimartingales is denoted
S m, and we write S = S 1. We let V + denote the set of
all nondecreasing càdlàg adapted processes null at zero, and
V = V +

− V + the set of all finite variation càdlàg adapted
processes null at zero. Also, A (Aloc) is the set of processes
in V of (locally) integrable variation.

• For X ∈ S m, L(X) is the set of all predictable X-integrable
processes H = (H1, . . . ,Hm). The stochastic integral is
denoted H · X . We always use vector stochastic integration
as described in Shiryaev and Cherny (2002). In particular,
(H · X)0 = 0 by definition.

• For X ∈ S m, H ∈ L(X1) ∩ · · · ∩ L(Xm), we write

H · X = (H · X1, . . . ,H · Xm) ∈ S m.

For Y ∈ S and H = (H1, . . . ,Hm) with H i
∈ L(Y ), i =

1, . . . ,m, we write

H · Y = (H1
· Y , . . . ,Hm

· Y ) ∈ S m.

For X ∈ S m and Y ∈ S we write

[X, Y ] = ([X1, Y ], . . . , [Xm, Y ]) ∈ S m.

For any H ∈ L(X), Theorem 4.19 in Shiryaev and Cherny
(2002) implies that

[H · X, Y ] = H · [X, Y ].

Throughout the paperwewill use basic notions and results from
convex analysis. The required material is reviewed in Appendix.

3. The financial market

We consider a financial market consisting of m assets whose
prices at any time t are given by St = (S1t , . . . , S

m
t ). The total net

supply of asset i is denoted H i
tot, which is assumed to be fixed

over time. We write Htot = (H1
tot, . . . ,H

m
tot). The assets may pay

dividends, and we let Dt = (D1
t , . . . ,D

m
t ) denote the cumulative

amounts that have been paid out by time t . It is assumed that
S ∈ S m and Di

∈ V + for each i. We allow Di
≡ 0, in which case

the associated asset does not pay any dividends at all. We do not
require that a locally risk-free asset exists, but if it does, then it is
one of them assets mentioned above. Moreover, we do not assume
that asset prices have been discounted (although we also do not
rule it out.)

In this section we describe the trading strategies available in
this environment, as well as state price deflators and the budget
constraints that they induce.

3.1. Trading strategies

A trading strategy is a predictable process H = (H1, . . . ,Hm) ∈

L(S)∩ L(D), where H i
t represents the number of units of asset i held

at time t . The corresponding wealth process is

W = H⊤S = H1S1 + · · · + HmSm,

where Wt is simply the nominal value of the portfolio at time t .
The trading opportunities of any given trader depend on the

information available to that trader, as well as on any investment
restrictions the trader might face. This is captured by means of
trading constraints, which associate to any given price process S
a subset K = K(S) of the set of all m-dimensional predictable
processes. One then requires that the trader’s trading strategy H
belongs to K.

Example 3.1 (Trading Restrictions). By choosing K suitably, a wide
variety of trading constraints, as well as informational restrictions,
can be enforced. For example:

• Solvency constraint: K = Ksol = {H : H⊤S ≥ 0}, enforcing a
nonnegative portfolio value;

• Credit-line (or ‘‘admissibility’’) constraints: K = Kadm = {H :

H⊤S ≥ −aL for some a ≥ 0}, where L is some nonnegative
process. An example is L = S1, where S1 represents a locally
risk-free bond;

• Short-sale prohibition: K = {H : H i
≥ 0 for all i};

• Participation constraint: K = {H : H1S1 ≤ (1 − ε)H⊤S}, the
set of strategies that invest atmost a fraction 1−ε of the total
portfolio value in asset 1;

• Informational constraints: K = {H : H is F′-predictable},
where F′

⊂ F is a given subfiltration that models the
information available to the trader.

A trading strategy H is called K-feasible if, up to indistinguisha-
bility,{
H ∈ K
W = W0 + H · (S + D) + A (some A ∈ Aloc).

The presence of the process Ameans that the trading strategy is not
self-financing in the usual sense, unlessA = 0. Indeed,A represents
the cumulative amount thatmust be added to (orwithdrawn from)
the gains process W0 + H · (S + D) in order to match the portfolio
valueW = H⊤S. The set of all feasible trading strategies is denoted
F(K); that is,

F(K) = {H ∈ L(S) ∩ L(D) : H is K-feasible} .

Remark 3.2. By definition, a trading strategy H is S- and
D-integrable relative to the filtration F, and all stochastic integrals,
such asH ·(S+D), are computed relative to this filtration. In partic-
ular, this is the case also when the trading constraints K force H to
be predictable relative to a subfiltration F′

⊂ F. This is important
because it may happen that a process H is S-integrable relative to
F′, but H · S is not an F-semimartingale; see Jeulin (1980, pages
46–47). To avoid difficulties in interpreting the trading outcome
of a less informed trader, we require all trading strategies to be
S-integrable relative to F.
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