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a b s t r a c t

We consider discounted repeated two-person zero-sum games with private monitoring. We show that
even when players have different and time-varying discount factors, each player’s payoff is equal to his
stage-game minmax payoff in every sequential equilibrium. Furthermore, we show that: (a) in every
history on the equilibrium path, the pair formed by each player’s conjecture about his opponent’s action
must be a Nash equilibrium of the stage game, and (b) the distribution of action profiles in every period is
a correlated equilibrium of the stage game. In the particular case of public strategies in public monitoring
games, players must play a Nash equilibrium after any public history.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In a two-person zero-sum game, one player’s gain is the other’s
loss. Therefore, this class of games is regarded as the prototype
example of a strictly competitive game. Von Neumann’s minimax
theorem (see, e.g., Myerson, 1991, Theorem 3.2, p. 123) shows
that in all Nash equilibria of such games, every player receives
his minmax payoff, i.e., the lowest payoff that he can guarantee to
himself.

It is clear that the same conclusion applies to a discounted
repeated two-person zero-sum game with perfect monitoring
when both players have the same discount factor. However, as
Lehrer and Pauzner (1999) have pointed out, when players have
different discount factors, the repeated game is no longer a zero-
sum one. Thus, one may conjecture that the equilibrium set will
expand, in particular, by allowing players to obtain higher payoffs
than the minmax one. Intuitively, we could think that the player
with the smaller discount factor is willing to bear losses in the
future if she is compensated with some gains in the present; and
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vice versa for the other player. Lehrer and Pauzner (1999) show
that this intuition is misleading and that, despite the fact that
the repeated game is no longer a zero-sum game, each player
receives his stage-game minmax payoff in each subgame perfect
equilibrium of the repeated game.

We extend Lehrer and Pauzner’s (1999) above result to
discounted repeated two-person zero-sum games with private
monitoring (as in Mailath and Samuelson, 2006, Chapter 12) and
with possibly different and time-varying discount factors for both
players. Specifically, for each game in this class, we show that each
player’s payoff is equal to his stage-game minmax payoff in every
sequential equilibrium.

Furthermore, we show that (a) in every history on the
equilibrium path, the pair formed by each player’s conjecture
about his opponent’s action must be a Nash equilibrium of the
stage game, and (b) the distribution of action profiles in every
period is a correlated equilibrium of the stage game. In the
particular case of public strategies in public monitoring games, we
show that players must play a Nash equilibrium after any public
history. An analogous result may or may not hold in the case of
private monitoring games as we show by two examples.

Our results differ from those in Lehrer and Pauzner (1999) as
follows. First, we weaken their assumption of perfect monitoring
to private monitoring. This extension is interesting in light
of the results in Lehrer and Yariv (1999), where it is shown
that conclusions of Lehrer and Pauzner (1999) fail in the
context of repeated games with incomplete information on one
side. Specifically, one-sided incomplete information and private
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monitoring are two ways of extending the perfect monitoring,
complete information case by introducing some degree of
incomplete information. In contrast to what happens in the one-
sided incomplete information case of Lehrer and Yariv (1999), we
show that the conclusions of Lehrer and Pauzner (1999) extend to
the case of private monitoring.2

Second, we weaken the assumption that each player has a
constant discount factor. In particular, our setting allows for the
case in which there are two distinct discount factors, one player
uses the lower one in odd periods and the higher one in even
periods, and vice versa for the other player. In such a case, there is
no longer a uniformly less patient player as in Lehrer and Pauzner
(1999). Nevertheless, as we show, their conclusion for two-player
zero-sum games remains valid.

Third, our results apply to repeated n-player zero-sum games
provided that the sum of the players’ minmax payoffs equals zero.
This is unlike Lehrer and Pauzner (1999) who consider only two-
player games. While some of Lehrer and Pauzner’s (1999) results
are hard to extend beyond the two-player case (see, e.g. footnote
2 in Sugaya, 2015), we show that their result regarding two-player
zero-sum games does extend.

Our results contrast with recent folk theorems for repeated
games with unequal discounting obtained by Chen and Takahashi
(2012) (for perfect monitoring games) and Sugaya (2015) (for
imperfect public monitoring games). The latter assumes that the
set of feasible and individually rational payoffs of the stage game
has full dimension, a condition that clearly fails in two-person
zero-sum games. Our results show that the condition in Chen and
Takahashi (2012), dynamically non-equivalent utilities, also fails
in repeated two-person zero-sum games for any profile of (time-
invariant and) player-specific discount factors. Many other papers
have studied repeated games with unequal discounting, although
none has considered the case of zero-sum games with private
monitoring. These include Chen (2007) in the case of finitely
repeated games, Takahashi (2005), Chen (2008), Salonen and
Vartiainen (2008), Fong and Surti (2009), Guéron et al. (2011) and
Dasgupta and Ghosh (2013) in the perfect monitoring case, Houba
andWen (2006), Haag and Lagunoff (2007), Acemoglu et al. (2008),
Houba andWen (2008), Houba andWen (2011), Fainmesser (2012)
and Opp (2012) in specific economic applications, and Lehrer and
Scarsini (2013) in the case of dynamic cooperative games.

The paper is organized as follows. The setting and main
definitions are presented in Section 2. Section 3.1 contains our
main result for private monitoring games (Theorem 1), our result
for public monitoring games (Theorem 2) and their extension for
n-player zero-sum games (Remark 2). The proof of our results
is in Section 3.2. Section 3.3 presents an example where a Nash
equilibrium of the stage game is played in every period in any
sequential equilibrium; Section 3.4 presents an example where
this property does not hold.

2. Notation and definitions

The stage game: A two-player, zero-sum private monitoring game
G = (N, (Ai, Zi, u∗

i )i∈N , ρ) is defined as follows. The set of players
is N = {1, 2} and Ai is the finite set of player i’s actions. Let
A =


i∈N Ai be the set of action profiles. The set ofmixed actions of

player i ∈ N is denoted by∆(Ai), andwe letM(A) =


i∈N ∆(Ai) be
the set of the mixed action profiles. Each player does not observe

2 Itwould be interesting to consider a generalmodel of repeated zero-sumgames
having the one-sided incomplete information setting of Lehrer and Yariv (1999) as
well as the private monitoring framework considered here as special cases, and to
obtain conditions under which the results in Lehrer and Pauzner (1999) do, and do
not, extend. We leave this for further research.

the action played by the other player but instead only a private
signal. We let Zi be the finite set of player i’s private signals, Z =

i∈N Zi and ρ a mapping assigning a probability distribution over
Z to each action profile a ∈ A. Thus, for each a ∈ A, ρ(·|a) ∈ ∆(Z)
and, for each z = (z1, z2) ∈ Z , ρ(z|a) is the probability that zi is
observed by player i = 1, 2 when a is played. Player i’s (ex-post)
payoff is u∗

i : Ai × Zi → R.
Ex-ante stage game payoffs are given by ui : A → R for each

i ∈ N , where ui(a) =


z∈Z ρ(z|a)u∗

i (ai, zi) for each a ∈ A and
i∈N ui(a) = 0 for every a ∈ A.
The following notation will be useful. Let ρ(z|α) =


a∈A α(a)

ρ(z|a) for each α ∈ ∆(A). Furthermore, let A−i and ∆(A−i) be,
respectively, the action set and the mixed action set of player
i’s opponent. The mixed extension of player i’s payoff function is
also denoted by ui and defined by ui(σ ) =


a∈A σ(a)ui(a) for

each σ ∈ ∆(A). Denote the minmax payoff for player i by vi =

minσ−i∈∆(A−i) maxai∈Ai ui(ai, σ−i). We will consider, without loss of
generality, the normalized game in which both players’ minmax
payoff is zero, i.e.

v1 = v2 = 0.

We say that G is a public monitoring game if Z1 = Z2 and
ρ(z|a) = 0 for all a ∈ A and z = (z1, z2) ∈ Z with z1 ≠ z2.
The repeated game: The infinitely repeated game G∞ consists of
an infinite sequence of repetitions of G. At any stage of the game,
starting at date 1, each player takes an action which may depend
on his previous private signals and his previous actions. He then
receives a private signal according to ρ · i.

For any t ∈ N, the set of all t-stage histories is denoted by
Ht = (A × Z)t , with the initial history containing only the empty
set, H0 = {∅}. The set of all histories is defined by H =


t∈N0

Ht .
For each i ∈ N , the set of player i’s private histories is Hi =

t∈N0
(Ai × Zi)t and the set of player i’s t-stage private histories

is Hi,t = (Ai × Zi)t . When G is a public monitoring game, a t-stage
public history is ht =


(a1, z1), . . . , (at , zt)


∈ Ht such that zτ

1 = zτ
2

for all τ = 1, . . . , t . Let Hp
t denote the set of all t-stage public his-

tories.
A behavior strategy for player i ∈ N is a function fi : Hi →

∆(Ai) mapping private histories into mixed actions, with fi,ai(hi,t)
denoting the probability of ai being chosen by player i after history
hi,t ∈ Hi has occurred. Given a strategy fi and a history hi,t ∈ Hi,
the strategy induced by fi at hi,t is denoted by fi|hi,t . Let Fi be the set
of all strategies of player i, and F = Πi∈NFi the set of all strategies
profiles.

We say that a strategy profile f ∈ F is action-free if fi(hi,t) =

fi(h̄i,t) for each i ∈ N , t ∈ N0, hi,t =

(a1i , z

1
i ) . . . , (ati , z

t
i )


∈ Hi,t

and h̄i,t =

(ā1i , z̄

1
i ) . . . , (āti , z̄

t
i )


∈ Hi,t with (z1i , . . . , z
t
i ) =

(z̄1i , . . . , z̄
t
i ). Note that, in the case where G is a public monitoring

game, action-free strategies are called public strategies.
A strategy profile f induces a probability distributionπ

f
t overHt

for each t ∈ N0 and a probability distribution P f over the infinite
sequences of signal and action profiles, the set of such sequences
being denoted by Y = (A × Z)∞. Expectations with respect to P f

will be denoted by E f . A strategy profile f also induces a probability
distribution over the set of actions in each period t ∈ N, which
will play a role in our results. For each t ∈ N, such distribution is
denoted by αt(f ) ∈ ∆(A) and is defined by

αt
a(f ) =


ht−1∈Ht−1


z∈Z

π
f
t (ht−1 · (a, z))

for all a ∈ A, where ht−1 · (a, z) = ((a1, z1), (a2, z2), . . . , (at−1,
zt−1), (a, z)) for each ht−1 =


(a1, z1), (a2, z2), . . . , (at−1, zt−1)


∈ Ht−1.

We assume that each player i ∈ N discounts the future with
discount factors δi

t ∈ (0, 1) for t ∈ N, satisfying limt δ
i
t < 1. The



Download English Version:

https://daneshyari.com/en/article/7367767

Download Persian Version:

https://daneshyari.com/article/7367767

Daneshyari.com

https://daneshyari.com/en/article/7367767
https://daneshyari.com/article/7367767
https://daneshyari.com

