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• We generalize the results of Siegel (2009, 2010) to accommodate performance spillovers.
• We prove that an all-pay contest with additively separable spillovers has a unique Nash equilibrium.
• We construct the equilibrium payoffs and strategies in the all-pay contests with additively separable spillovers.
• We also construct the unique Nash equilibrium in a two-player all-pay contest with multiplicatively separable spillovers.

a r t i c l e i n f o

Article history:
Received 5 February 2017
Received in revised form 25 August 2017
Accepted 7 September 2017
Available online xxxx

a b s t r a c t

This paper generalizes the results of Siegel (2009, 2010) to accommodate performance spillovers, with
which a player’s performance in a contest may affect the performance cost of another player. More
precisely, we show that, if for any player, the spillovers from other players’ performance enter his cost
in an additively separable form, then an all-pay contest has a unique Nash equilibrium. Moreover, we
construct the equilibrium payoffs and strategies. Both the equilibrium uniqueness and construction are
generalized to multiplicatively separable spillovers in a two-player contest.

© 2017 Published by Elsevier B.V.

1. Introduction

Performance spillovers are prevalent in contest situations. For
example, higher expenditure from a lobbyist may make it easier
for another lobbyist to justify his expenditure; a company’s R&D
effort may benefit its rivals, and hard working classmates make it
easier, or less costly, for an individual student to study hard. Siegel
(2009, 2010) studies contests among asymmetric players without
spillovers, and Baye et al. (2012) study contests between two
symmetric players with spillovers. The two setups demonstrate
different equilibrium properties. For example, an asymmetric con-
test without spillovers has a unique Nash equilibrium, while a
symmetric contest with spillovers may have one or more Nash
equilibria depending on parameter values. To bridge the gap be-
tween these studies, this paper investigates contests that allow
spillovers among asymmetric players.

Specifically, we introduce two types of spillovers in contests:
additive and multiplicative. With additive spillovers, the other
players’ performance levels enter a player’s cost function in an
additively separable way. For example, given the other player’s
performance sj, player i’s cost of performance si is Ci(si, sj) =
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si − s̄, which means player i’s cost depends on not only his own
performance but also the average performance s̄ = (si + sj)/2.
As a result, player j’s performance affects i’s cost through the
average performance.1 This is an aggregate game with linear
structure. Linear models with aggregate performance are widely
used in empirical studies of spillovers in innovation (e.g. Audretsch
and Feldman, 1996), workplaces (e.g. Mas and Moretti, 2009)
and education (e.g. Angrist, 2014). Acemoglu and Jensen (2013)
provide a theoretic study on spillovers through the average or
aggregate action inmore general competitions. These studies focus
on competitions that are not based on performance ranking, so
those competitions are different from contests.

With multiplicative spillovers, the other players’ performance
levels affect one player’s performance cost in a multiplicatively
separable way. An example of such cost functions is Ci(si, sj) =

s̄si, which means the average performance s̄ affects the marginal
cost of player i’s performance si.2 Production functions with such
a multiplicative form are used in studies of spillovers in R&D
(e.g. Griliches, 1991) to capture the aggregate knowledge’s effect
on an individual firm’s marginal productivity. They are also used
in studies of more general social interactions, e.g., Glaeser and
Sacerdote (2003).

1 See more in Example 1.
2 See more in Example 2.
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If we introduce performance spillovers into a contest, the orig-
inal equilibrium strategies may no longer be an equilibrium.3
However, we show that all-pay contests with additive or mul-
tiplicative spillovers have a unique Nash equilibrium. Moreover,
we manage to construct the equilibrium payoffs and strategies.
Both equilibrium uniqueness and characterization are useful for
applications involving contest design in the presence of spillovers.

2. Additive spillovers

Our model builds on that of Siegel (2010), to which we add the
possibility of performance spillovers. Consider a contest inwhich n
risk neutral players compete form homogeneous monetary prizes,
where 0 < m < n.4 The prize value is normalized to 1.5 Denote
the set of players as N = {1, . . . , n}. Each player i simultaneously
chooses a performance level, or score, si ≥ 0. Let s = (si)i∈N
be the scores of all players, and s−i = (sj)j∈N\{i} be the scores of
all players except i. Given all players’ scores s, player i’s payoff is
ui(s) = Pi(s)−Ci(s), where Pi : Rn

+
→ [0, 1] is player i’s probability

of winning, and Ci : Rn
+

→ R is his cost of score. Note whether he
wins or not, player i incurs the cost.6 The probability of winning
is Pi(s) = 1 if i’s score si exceeds those of at least n − m other
players, Pi(s) = 0 if si is lower than those of at least m others, and
Pi(s) equals any value in [0, 1] otherwise. For each i, Ci(s) is strictly
increasing in si, meaning player i’s score si is costly for him. Note
that Ci(s) depends on all players’ scores, so theremay be spillovers.
If Ci(s) is independent of s−i, there are no spillovers, and our setup
reduces to that of Siegel (2010).

We assume that the spillovers from other players’ scores enter
the cost in an additively separableway, i.e.,Ci(s) = Ki(si)+Hi(s−i) for
each i, where Ki : R+ → R+ and Hi : Rn−1

+ → Rmay differ among
players, representing asymmetry in costs and spillovers respec-
tively. The contest is of complete information, so these functions
are commonly known. Recall that Ci(s) is strictly increasing in si
and Hi(s−i) is independent of si, so Ki(si) is also strictly increasing
in si. Then, assume that there exists smax > 0 such that Ki(smax) > 1
for all i, and define player i’s reach as ri = K−1

i (1), and re-index
the players such that r1 ≥ · · · ≥ rn.7 We assume ri ̸= rm+1 for
i ̸= m + 1. In addition, assume Ki(0) = 0 and Ki is continuous and
piecewise analytic on [0, rm+1].8 Moreover, for each j ̸= i, Hi(s−i)
is piecewise continuous in sj on [0, rm+1].9 The above contest is
referred to as the contest with additive spillover. The following
example illustrates the general model in a linear setup.

3 See Examples 1 and 2.
4 Our results can be extended to heterogeneous prizes. For example, Bulow and

Levin (2006) and González-Díaz and Siegel (2013) study contests with arithmetic
prize sequences (with constant first order differences), and Xiao (2016) studies
contestswith quadratic prize sequences (with constant second order differences) or
geometric prize sequences (with constant ratios between two consecutive prizes).
Equilibrium uniqueness and construction are established in those contests. By
the same argument in this paper, we can generalize those results to the case of
additively separable spillovers.
5 Our analysis can be extended to allow players to have asymmetric valuations

of the prize.
6 Because of the all-pay feature, the cost is sunk, so it remains the samewhether a

player wins. As a result, the spillovers represented by the cost functions also remain
the same whether a player wins or not. In contrast, Baye et al. (2012) also consider
rank-order spillovers that depend on the rank of a player’s score, and demonstrate
possibly multiple equilibria in the presence of rank-order spillovers.
7 The definition of ‘‘reach’’ is first introduced by Siegel (2009).
8 A function is piecewise analytic on an interval if the interval can be partitioned

into a finite number of closed intervals such that the restriction of the function to
each interval is analytic.
9 A function is piecewise continuous on an interval if the function is continuous

on all points in the interval except a finite number of points at which the function
has finite limits.

Example 1. Suppose the cost is Ci(s) = cisi − hs̄, where ci ∈ R+

is player i’s marginal cost of score, and s̄ = (
∑n

i=1si)/n is the
average score. Here the spillover depends on the average score, and
h measures the scale of spillover. If h = 0, there is no spillover.
If h is positive (negative), a higher average score makes player i’s
score less (more) costly. Assume distinct marginal costs so that
0 < c1 < · · · < cn.10 In this example, Ki(si) = (ci − h/n)si and
Hi(s−i) = −h(

∑
j̸=isj)/n. The assumption ∂Ci(s)/∂si > 0 requires

h < nci for all i.11 Both functions dependon the spillover parameter
h. If h is positive (negative), Ki(si) is lower (higher) than player i’s
scoring cost cisi.

A strategy profile constitutes a Nash equilibrium if each player’s
(mixed) strategy assigns a probability of one to the set of his best
responses against the strategies of other players. We only consider
Nash equilibria here.

Equilibrium characterization. In the absence of spillovers, the
method of Siegel (2009) can be used to derive equilibrium payoffs,
with which equilibrium strategies can be constructed according
to the algorithm of Siegel (2010). However, this approach is not
applicable here. This is because with spillovers, we can no longer
derive equilibrium payoffs as in the case without spillovers.

In contrast to Siegel’s method, our method first constructs
equilibrium strategies, which we then use to derive equilibrium
payoffs. Given the original contest, consider an auxiliary contest
with the same prizes but different players, whose cost functions
are Ki(si) for all i. The auxiliary contest has no spillover, but it is
different from the original contest without spillovers. For instance,
if h = 0 in Example 1, there is no spillover, and a player’s scoring
cost is cisi, which is different from Ki(si) = (ci − h/n)si in the
auxiliary contest.

According to Siegel (2010), the auxiliary contest has a unique
equilibrium. In this contest, let Gi : R+ → [0, 1] be the c.d.f.
representing player i’s equilibrium strategy, and G = (Gi)i∈N be
the equilibrium. If Gi assigns probability 1 to a single score, it
represents a pure strategy.

Lemma 1 (Strategic Equivalence). A strategy profile is an equilibrium
in the contest with additive spillovers if and only if it is an equilibrium
in the auxiliary contest.

Proof. In the auxiliary contest, if the other players use strategies
G−i = (Gj)j∈N\{i}, player i’s expected payoff from choosing si
is E[Pi(s) − Ki(si)]. In the contest with spillovers, if the others
players use strategies G−i, player i’s expected payoff from choos-
ing si becomes E[Pi(s) − Ki(si)] − E[Hi(s−i)], where E[Hi(s−i)] =∫
Hi(s−i)dG−i(s−i) is independent of his score.12 The independence

is a result of the additive separability. Thus, G is also an equilib-
rium in the contest with spillovers. Similarly, the converse is also
true, i.e., any equilibrium in the contest with spillovers is also an
equilibrium in the auxiliary contest. ■

The result below shows that the original contest with spillovers
also has a unique equilibrium, and it is the same one constructed
in the auxiliary contest.

Proposition 1. The all-pay contest with additively spillovers has a
unique equilibrium, which is the same as the one that the algorithm
of Siegel (2010) constructs for the auxiliary contest.

10 This is to ensure the assumption that ri ̸= rm+1 for i ̸= m + 1 is satisfied.
11 Otherwise, with h > nci , it is optimal for player i to choose si = +∞.
12 According to Siegel (2010), each player j’s equilibrium strategyGj is continuous
with a finite support. Moreover, Hi is piecewise continuous so is bounded over the
supports of G−i . Hence, E[Hi(s−i)] =

∫
Hi(s−i)dG−i(s−i) < +∞.
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