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h i g h l i g h t s

• The state of a stochastic system is modeled as a quantum diffusion process via a new Quantum Stochastic dynamics.
• An existence and uniqueness solution theorem for QSDE is proved.
• The explicit optimal quantum control laws are designed.
• Spread evolution Modelling, more precisely and increasing portfolio managing are achieved.
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a b s t r a c t

The purpose of this paper is to design an optimal quantumcontroller for a class of stochastic
systems with application in financial problems. Dynamics of the system is prescribed via
a Quantum Stochastic Differential System (QSDES) with a quantum Brownian motion on
a quantum probability space. A theorem for guaranteeing the existence and uniqueness of
solutions to the QSDES is proved. Additionally, a new optimal stochastic control problem is
formulated and based on the necessary optimality conditions, an optimal quantum control
law is designed, explicitly. Four theorems and two lemmas, for facilitating the optimal
controller design algorithm, are proved. Finally, for demonstrating the applicable results,
two financial problems, Merton portfolio allocation and optimal pairs trading problem are
simulated by using the presented method. As the simulation results indicate, portfolio
optimal performances, minimum risk and maximum return, are achieved via presented
method.

© 2018 Published by Elsevier B.V.

1. Introduction

The general topic of optimal control theory is to find a control law for a given system such that the certain optimality
criterions are achieved. In an optimal control problem, an optimal control signal controls a dynamical system forminimizing
a given cost function [1]. The Bolza problem, Lagrange problem and the Mayer problem are the most famous optimal
control problems [1]. There are many methods to solve these optimal control problems. These methods are classified into
two categories, the direct and indirect approaches [2]. In the direct approaches, the dynamical system is discretized and
then an optimal solution of the discrete problem is obtained. Among the direct approaches, finite element method for
parameterizing problem [3] and finite differencemethod [4] for state equations of the problem are commonmethods. One of
the advantages of these methods is that an explicit solution for the optimal control problems can be obtained. In the indirect
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approaches, the necessary conditions for optimality of the control problem are determined by using variational techniques,
such as variational calculus [5] and pontryagin’s maximum principle [6]. Finally, the resulting equations are discretized and
solved numerically [7]. There are two general indirect methods, the Dynamic Programming method, developed by Bellman,
and the Pontryagin Maximum Principle method [8]. The Dynamics Programming Problems (DPP) are common problems
in economics, finance and natural resource management. It is worth noticing that, the value functions and the optimal
strategies (actions or controls) are solutions of a given optimal control problem that is solved byDPP approach. Also, solutions
typically are calculated by numerical approximation techniques which are various in using complexity and computational
requirements [9].

In practice, many control systems have uncertain or imperfectly known disturbances, that may be taken as random
variables. In the study of deterministic control models, these disturbances are ignored [8]. In contrast, optimal stochastic
control theory handles models in which the disturbances of the system are modeled as a random noise with a known
probability distribution function [8]. The stochastic optimal control aim is to design the time path of random variables
controlled by a desired control task such that a cost function of the system be minimum [10]. The stochastic control context
may be discrete or continuous time frameworks. In the discrete time framework, the objective is that sum of expected
values of a non-linear function be optimized, from the initial to the final time [2]. The non-linear objective functionmay be a
quadratic function possibly. In continuous-time control, the state of the system is known for controller in any time. Also, the
objective is that integral of a concave function of a state variable be maximum over a horizon from initial time to a terminal
time T or maximum of this function at some future date T [11].

Depending on type of the cost function and system dynamics, there are various stochastic optimal control problems that
can be solved by various methods. The first class of such problems is Linear Quadratic Regulator control problems. If the
system dynamics is linear and the cost function is a quadratic then the solution is presented as a number of coupled ordinary
differential equations (Ricatti equations) [12]. For instance, a chemical system that operates around a desired point in a state
space can be maintained by LQR control. Also, this method is applied in engineering, widely. However, LQR control cannot
model the complexity of intelligent behavior of agents or robots, perfectly [12].

In the framework of controlled diffusion, the dynamics of state of the system is modeled by a Stochastic Differential
Equation (SDE) such that the resulting stochastic optimal control problems are formulated on finite or infinite horizon [13].
Note that, to describe different systems, there are different types SDEs such as the classical SDEs with respect to Brownian
motion, Levy processes and Poisson point processes [14]. The stochastic optimal control problems can be solved by two
approaches, using a partial differential equation Hamilton–Jacobi–Bellman (HJB) and using the Pontryagin Maximum
Principle (PMP) which are based on the dynamic programming method and the calculus of variations that yields a pair
of ordinary differential equations, respectively [13]. The classical dynamic programming method is adopted when the priori
assumption of the smoothness of the value function is satisfied. This is not established in nature, necessarily. To avoid this
drawback, a suitable formulation in viscosity solutions for dynamic programming equationswas introduced [13,15]. Another
approach, called the convex dualitymartingalemethod, is found by using of the Stochastic Maximum Principle (SMP), which
drives a system with Forward or Backward Stochastic Differential Equations (FSDE/BSDE) [16]. These modern presentations
of stochastic optimal control problems have been motivated by portfolio optimization problems solving [13,17].

In using the approaches which were mentioned above, all aspects (the dynamics, the environment and the cost) are
considered as known aspects. On the other hand, it is trivial that the real and physical systems have several types of
uncertainty, in nature. For instance, if the state variable Xt be unknown, then a probability distribution via p(Xt |Y0:t ) is used
instead of Xt , where Y0:t denotes all previous observations in Bayesian method. Also, it is possible that the parameters of a
stochastic differential equation (SDE) be unknown. In such cases, the learning techniques on finite/infinite horizon [11],
the partial observability problems [18–20] or the joint inference and control problems [21] can be useful. Additionally,
the expectation values of the utility function, in the dynamic programming approach, are computed. Thus, all states
need to be observed and some tedious calculations must be done. The reinforcement learning approach encounters these
intractability’s [22,23].

So far, we conclude that a partial differential equation must be solved to obtain the solution of the stochastic optimal
control problems. This is not an attractive option, in practice. In this case, although LQR approach is considered as a common
approach (i.e approximate the problem by a linear quadratic problem which can be solved using the Ricatti equations) but
the path integral methods can solve a class of non-linear and non-quadratic control problems, also [24]. Additionally, in
path integral method, the non-linear HJB equation is transformed into a linear equation by a log transformation [18,25]. In
consequence of the linear description, instead of the usual backward integration of the HJB equation one can compute the
expectation values under a forward diffusion process. In fact, a stochastic integration on the trajectories is used to compute
the expectation values. Additionally, the stochastic integration can be described by a path integral [26]. The path integral
leads us to non-linear Kalman filters method [27] and it’s contributions in hidden Markov models [28]. There are various
methods to approximate this path integral such as Laplace approximation [24], Monte Carlo sampling [29] and variational
approximation [30].

A quantum control system can be manipulated as a control system for achieving to a desired state in a Hilbert
space [31,32], based on quantummechanics as a flexible and powerful framework for solving the control problems. Also, in
addition to the path integral approach, the quantummechanics uses the operator transformations to describe the stochastic
optimal control problems in a linear formalism. By applying the optimization method for classical control system to the
derivation of Hamilton–Jacobi equation, the resulting HJ equation of stochastic system is equivalent to the Schrödinger
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