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ABSTRACT 

Stochastic and fractional models are defined by applications of Liouville (and other) fractional operators.  
They underlie anomalous transport dynamical properties such as long range temporal correlations 
manifested in power laws.  Prolific applications to finance and other domains have been published, based 
mostly on a randomness defined by the fractional Brownian Motion. Application to probability 
distributions (Tapiero and Vallois 2016a, 2017, 2018), have indicated that fractional distributions are 
incomplete and their limit distributions  (based on the Central LimitTheorem) depend on their fractional 
index.  For example, for a fractional index 1 / 2 1H  , we showed that a fractional Brownian Bridge 
defines a fractional randomness (rather than a Brownian Motion).  In this paper we consider the case 
0 1 / 2H   and prove that the underlying fractional distribution is a randomness defined by an  
stable distribution with  1 / (1 )H     to  1,2H  .  Then, the smaller the fractional index, the greater 

the propensity for a  randomness to be defined by a jump process rather than diffusions defining 
randomness.  These properties are important in applications where risks, prices and their management are 
dependent of their definition of randomness.   
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