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h i g h l i g h t s

• We propose complexity–entropy causality plane based on power spectral entropy.
• The power spectral entropy is derived from Fourier transformation and is free of parameters.
• Time series generated from different classes of systems can be clearly distinguished in our plane.
• The plane can determine the start–stop time and classification of fault signals corresponding to bearing vibration signals.
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a b s t r a c t

The complexity–entropy causality plane based on permutation entropy is a powerful
tool to discriminate signals from different systems. In this paper, we combine traditional
statistical complexity measure and power spectral entropy and construct complexity–
entropy causality plane in frequency domain. The power spectral entropy is derived from
Fourier transformation, so some features that are obscure in time domain can be extracted
in frequency domain. Comparing to permutation entropy, thismethod is free of parameters.
Several time series generated fromdifferent classes of systems are analyzed to demonstrate
the measure. Results show that these signals can be clearly distinguished in our plane.
Then by adding sinusoidal abnormal signal into original one, the abnormal information
can be efficiently detected. Finally, we apply it to bearing vibration signals. Empirical
consequences illustrate that the start–stop time and classification of fault signal can be
clearly determined.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Investigation on complex system is a hot topic in recent years. Researchers have introduced lots of complexity measures,
such as Kolmogorov complexity [1], fractal dimensions [2], Lyapunov exponents [3] and entropies [4,5]. Moreover, inspired
by the definition of entropy,many entropymethods are proposed to analyze time series [6,7]. However, some of themethods
rely on specific algorithmor tuning parameters, whichmay lead to false identification. Bandt and Pompe had posed this issue
and proposed a newmethod attempting to work out the former problems, named permutation entropy [8]. This method has
been extensively utilized in nonlinear dynamic systems [9–11].

Nevertheless, deriving from the definition of entropy, the completely ordered process probability distribution is con-
centrated in a certain state, and only a small amount of information can be obtained to describe its system behavior, so
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the information is considered to be the smallest. On the other hand, the maximum random process is fully disordered,
and the probability of any state is equal, so the quantity of information reaches the largest. Completely ordered and
maximum random systems, as two simple systems, are at two extremes in the ‘‘information’’ measure (maximum and
minimum). So there are some limitations only considering the ‘‘information’’ to describe the complexity of systems.
The distance between the uniform distribution (equal probability distribution) and system probability distribution is a
reasonable measure of complexity, and disequilibrium is just the characteristic of the probability distribution, giving a
view of probabilistic hierarchy of system. The value of disequilibrium would be different from zero if the privileged, or
more probable status exists. The combination of ‘‘information H ’’ and ‘‘disequilibrium Q ’’ is taken as a statistical complexity
measure C known as López–Mancini–Calbert (LMC) complexity measure, that is C = HQ , where H is in accordance with
thermodynamic entropy and Q is the quadratic distance [12]. Corresponding to the different values of the entropy measure
S and the disequilibrium Q , different statistical complexity measures are generated, such as Shiner–Davidson–Landsberg
(SDL) statistical complexity [13]. There are a large number of possible physical structures between two specific cases,
completely ordered andmaximum randomprocess. And the degree of statistical complexity can be reflected by the potential
system probability distribution, which derives a series of statistical complexity measures and are used to reveal the complex
dynamics that are implicit in the system.

By integrating permutation entropy and complexity measure, Rosso et al. proposed complexity–entropy causality plane
(CECP) which is a powerful tool that describes the dynamic characteristics of the system [14–17], involving LMC complexity
measure [12], SDL complexity measure [13] and Jensen–Shannon divergence. This method can better characterize the
complexity of the physical structure of the system. By applying Jensen–Shannon divergence instead of Euclidean distance,
this generated statistical complexity measure has the intensive characteristic detected in lots of thermodynamic quantities,
which can also better reflect the key details of the dynamic characteristics of the system, and distinguish between different
degrees of periodicity and chaos, whereas this kind of information cannot be recognized by the randomness measure. And
its applications greatly spread over various scientific community for distinguishing noise, chaotic system and stochastic
process [18–24].

Here we combine traditional complexity–entropy causality plane (CECP) with power spectral entropy, aiming to analyze
signals in frequency domain. The proposed algorithm is novel and rather simple. What should be done is just changing
permutation entropy into power spectral entropy. Unlike permutation entropy, power spectral entropy (PSE) is free of any
parameters. PSE interprets the spectrum structure of signal in frequency domain, in other words, time uncertainty. If the
distribution of energy is more uniform in the whole frequency domain, the signal has more complexity and thus the value
of PSE is higher; whereas the narrower the spectrum peak is, the smaller the value of PSE is, which means that the system is
more concussive and less complex. And the statistical complexity measure C is also redefined, which estimates the distance
between power spectrum distribution of signal and uniform power spectrum distribution.

The rest of the paper is organized as follows. Section 2 introduces the methodologies of statistical complexity measure
and power spectral entropy. Then we integrate these measures and present the complexity–entropy causality plane based
on power spectral entropy and sliding window. In Section 3, we select several different kinds of processes to validates the
effectiveness of proposed method, and then analyze the power spectrum of original signal and signal adding sinusoidal
information. Section 4 displays the empirical application in rolling bearing data. Finally, the conclusions are drawn in
Section 5.

2. Methodology

2.1. Statistical complexity measure

Statistical complexity can be defined to describe a systemwith a simple structure but complex dynamical characteristics
and can also reveal complex patterns that are implicit in its inner dynamics [25]. At the same time, the statistical complexity
considers that there are two opposing extremities in the nonlinear dynamic system, that is, completely order andmaximum
randomness. In both cases, the system structure is very simple, only zero statistical complexity. Between these two specific
cases, there are a large number of possible physical structures, which can be reflected by the potential system probability
distribution characteristics [26].

For a given nonlinear systemwith any arbitrary discrete probability distribution P = {pi, i = 1, 2, . . . ,N}withN possible
statuses, the well-known Shannon information theory is described as [4]:

S[P] = −

N∑
i=1

pilog(pi) (2.1)

The value of S[P] quantifies the complexity of the system with some degree. If S[P] = 0 we can predict certainly that all the
possible outcomes iwhose probability is set by pi will actually happen. On the other hand, the uncertainty reachesmaximum
when the distribution is uniform, that is, S[Pe] = Smax = logN where Pe = {1/N, 1/N, . . . , 1/N}.

Another complexity measure is ‘‘disequilibrium’’, denoted by Q , which depicts the distance between a specified proba-
bility distribution and the equilibrium probability distribution. And the disequilibrium Q is defined in terms of the extensive
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