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h i g h l i g h t s

• Our starting point is the two-parameter generalized entropy of Hanel and Thurner.
• We construct the normalized associated probability distribution.
• We use the two parameters as coordinates of a manifold.
• We construct the information metric of the above manifold.
• We compute the scalar curvature and present it graphically.
• We conjecture that the maxima and minima of it correspond to systems with special properties.
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a b s t r a c t

In our previous paper (I)we derived information geometric objects from the two parameter
generalized entropy of Hanel and Thurner (2011), using the c,d parameters as labels of the
corresponding manifolds. Here we follow a completely different approach by considering
these parameters as coordinates of a single information manifold. This gives a manageable
two-dimensional manifold amenable to easy manipulations but most importantly it offers
a direct characterization of complex systems in terms of the pair of the c,d values. As a result
weobtain certain characteristic values from the scalar curvaturewhichwe could conjecture
that they represent complex systems with specific behavior. It is further observed that the
boundary values of the c,d parameterswhich characterize the Hanel–Thurner classification
are in some sense singular. This asks for a regularization schemewhich we try to establish.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Classification of complex systems and generalized entropies

In our previous paper (I) [1] we have discussed both the problems of definition, characterization and classification of
complex systems as well as the use of generalized entropies giving the most relevant references. Here our starting point is
again the two-parameter distribution related to the (c,d)-entropy of Hanel and Thurner [2] butwe consider these parameters
as coordinates of our informationmanifold. This offers a direct association of complex systemswith particular values of these
parameters where the scalar curvature is extremized.
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Information manifolds from probability distributions

Information Geometry emerged as a geometric framework in the theory of parameter estimation in mathematical
statistics [3]. For a given statistical model, that is a given class of probability measures, there is associated an information
manifold and a Riemannian metric. This metric enters in the estimation procedure through the Cramer–Rao Inequality
giving the possible accuracy of an estimator of the parameters of the model. Further on, one may define non-Riemannian
connections which offer a deeper analysis of the estimation procedure. Our work is based on the geometric quantities
emerging in the Information Geometry which is based on the two-parameter entropy functional of Hanel and Thurner [2].
In this paper the Hanel–Thurner parameters are used as coordinates of the information manifold. Thus we obtain a two-
dimensional manifold without any approximation, and we may use both analytical and numerical results to establish the
structure of this.

In Section 2 we introduce in a minimal way the necessary definitions and geometric quantities of Information Geometry.
In Section 3 the generalized entropy of Hanel and Thurner [2] is introduced with few comments on its derivation and
properties. In Section 4 we present our results. First we state some properties which establish the appropriateness of the
generalized distribution function. Then we compute the Riemannianmetric for the (c,d)-distribution function and the scalar
curvature. The first three graphs give aspects of the distribution function. The next three present the metric elements as
functions of the coordinates c,d giving the first impression of their non-trivial form. Then the numerical construction of the
scalar curvature is given in the seventh graph. From this it is evident that some areas of the manifold are not typical. To
reveal this structure we present certain sections of the curvature surface as functions of the c parameter for some values of
the d parameter. We also give the contour plots of the curvature and the locus of minima as a function of c and d. We could
conjecture that these extreme values correspond to complex systems of particular properties.

2. Basic concepts of information geometry

Geometry from probability distributions and the Cramer–Rao inequality

Here we present only the necessary concepts in order to establish the notation. We refer to the bibliography for the
details [3]. LetX be ameasurable space onwhich probability distributions are defined. LetΞ be a subset of Rn which contains
the parameters that characterize a set of probability distributions. Then

S = {pξ = p(x; ξ )|ξ = [ξ 1, . . . , ξ n
] ∈ Ξ} (1)

is a parametric family of probability distributions on X . This is an n-dimensional parametric statistical model. Given the N
observations x1, . . . , xN the Classical Estimation Problem concerns the statistical methods that may be used to detect the
true distribution, that is to estimate the parameters ξ . To this purpose, an appropriate estimator is used for each parameter.
These estimators are functions of data x, precisely, we define an estimator as a mapping ξ̂ = [ξ̂ 1, . . . , ξ̂ n] : χ → Rn. Since x
is randomly generated, we can consider ξ̂ as function of the random variable X . The quality of the estimation is measured
by the variance–covariance matrix Vξ (ξ̂ ) = [v

ij
ξ ] where

v
ij
ξ = Eξ [(ξ̂ i(X) − ξ i)(ξ̂ j(X) − ξ j)] (2)

Suppose that the estimators are unbiased, namely

Eξ [ξ̂ (X)] = ξ, ∀ξ ∈ Ξ (3)

Then a lower bound for the estimation error is given by the Cramer–Rao inequality

Vξ (ξ̂ ) ≥ G(ξ )−1 (4)

in the sense that Vξ (ξ̂ ) − G(ξ )−1 is positive semi-definite, where G(ξ ) = [gij(ξ )]

gij(ξ ) = Eξ [∂il(x; ξ )∂jl(x; ξ )] (5)

the Classical Fisher Matrix with

lξ = l(x; ξ ) = ln p(x; ξ ) (6)

the score function. As it has been shown the Fisher Matrix provides a metric on the manifold of classical probability
distributions. This metric, according to the theorem of Cencov [4], is the unique metric which is monotone under the
transformations of the statistical model. This means that if the map F : X → Y induces a model SF = {q(y; ξ )} on Y
then

GF (ξ ) ≤ G(ξ ) (7)

That is, the distance of the transformed distributions is smaller than the original distributions. Thus monotonicity of the
metric is intuitively related to the fact that in general we lose distinguishability of the distributions from any transformation
of the information.
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