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h i g h l i g h t s

• An accurate analytical equation for the lifetime of adhesion clusters is derived.
• A contribution of fluctuation effects to a response of cluster to an external force is elucidated.
• A scaling equation for the variation of the cluster lifetime with the number of bonds has been found.
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a b s t r a c t

We consider the mean lifetime of adhesion clusters under a constant applied force and
discuss in details different approximate solutions of this problem focusing on catch bond
clusters. The analytical equation for the lifetime is derived that is accurate for a broad
range of cluster parameters. A scaling equation for the variation of the cluster lifetimewith
the total number of available bonds is presented that holds already for relatively small
clusters. While we focus on consideration of catch bond clusters, the derived equations are
applicable also for description of lifetime of clusters including standard slip bonds.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Single-molecule force experiments have been proved powerful in obtaining information on intrinsic properties of
adhesion bonds, such as binding strengths, energy landscape along the dissociation pathway and kinetics of conformational
changes [1–4]. Biological andman-made adhesive contacts often involve not just one but several molecular pairs of the same
or different species [5–8]. The number of molecular pairs in an adhesion cluster may range from several (e.g., for nanoscale
tribological contacts) to 10−5 (e.g., in mature cell–matrix contacts). Adhesion cluster may consist of standard slip bonds,
for which the lifetime decreases with increasing applied forces, as well as of catch bonds possessing the unusual physical
property that at intermediate forces their lifetimes increase rather than decrease with increasing force [9,10]. In contrast to
single molecule pulling experiments, where the rebinding of a broken bond is often negligible due to the elastic relaxation
of the transducer, in adhesion clusters operating under force the broken bonds may rebind as long as the remaining intact
bonds hold ligands and receptors in close proximity.

Response of bond cluster to the external force is not simply the sum of single-bond responses but is influenced by
temporal dynamics across the entire ensemble of bonds. The way how the response of individual bonds can be averaged
to yield the cluster’s response has been the focus of intense research in the past decade [11–19], however many key aspects
of cluster dynamics are still not well understood. A non-equilibrium dissociation of adhesion clusters under force has been
first considered in a seminal paper by Bell [11], where a deterministic mean-field equation for the average number of
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closed (connected) bonds has been introduced. Later this approach has been extended to describe time-dependent linear
loading of adhesion clusters [12–15], which is studied in dynamic force spectroscopy experiments. While the mean-field
approach provides a reasonable description of time evolution of the bond population for large clusters, it generally does not
allow calculating one of the most important characteristics of the cluster, its lifetime. The latter requires a consideration of
fluctuation effects, which are neglected within the mean-field approximation. Contribution of fluctuations is also important
for consideration of an average number of closed bonds in small adhesion clusters. The stochastic rupture and formation of
bonds in a cluster of parallel bonds can be described by master equations for the probability of having n closed bonds at a
given time t, which have been solved numerically for scenarios involving a constant force [16–18] or linear loading [19].

The main objective of this work is to clarify a contribution of fluctuation effects to observable quantities and to obtain
analytical results for the lifetime of adhesion clusters, τ .We discuss in details different approximate solutions of this problem
focusing on catch bond clusters. We found that the saddle-point approximation of the exact equation for τ is accurate for
a broad range of cluster parameters. A scaling equation for the variation of the cluster lifetime with the total number of
available bonds has been derived that holds already for relatively small clusters. While we focus on consideration of catch
bond clusters, the derived equations are applicable also for description of lifetime of clusters including standard slip bonds.

2. The model

Following previous theoretical studies of forced unbinding of adhesion clusters [16–18], we consider a cluster with a
given total number Nt of parallel bonds. At any given time, each of the different bonds can be either open or closed, and we
denote by n (0 ≤ n ≤ Nt ) the instantaneous number of closed bonds, i.e. the cluster size. The constant force F applied to
the cluster is assumed to be shared equally between the n closed bonds. The stochastic dynamics of the bond cluster can be
described by the following master equation [16,17]:

dP (n, t)
dt

= P (n + 1, t) r (n + 1) + P (n − 1, t) g (n − 1) − P (n, t) (r (n) + g (n)) (1)

where P(n, t) is the probability that n bonds are closed at time t , and r(n) and g(n) are the rates at which one bond unbinds
from or binds to a cluster of size n, respectively. The equations for r(n) and g(n) follow from dissociation and association
rates of single bonds. Here, in agreement with majority of single molecule force experiments showing that unbinding and
rebinding processes can be described in terms of rate constants [1], we assume a Markovian kinetics of bond formation and
rupture. However, some recent experiments and simulations found significant deviations from the Markovian dynamics,
which result from complex multidimensional energy landscape of biological molecules [20–22].

Here we focus on the consideration of clusters consisting of catch-bonds [9,10], for which the lifetime increases with
increasing force at intermediate forces, f , and decreases with f for higher forces. Thus, a single-bond lifetime of a catch
bond is maximal at some finite force. Such behavior can be described by the two-pathway model [9], for which the force-
dependence of the dissociation rate of a single bond is given by the following equation

r (f ) = ks exp
[

xs
kBT

· f
]

+ kc exp
[
−

xc
kBT

· f
]

(2)

where kc , ks and xc , xs are the force-free dissociation rate constants and barrier widths for each pathway, respectively. The
lifetime in Eq. (2) exhibits a maximum as a function of f under the condition a =

kcxc
ksxs

> 1, and τ is maximized at critical
force fcr =

kBT
xs+xc

ln (a).
The rate of association is assumed to be independent of the applied force, as the bond is unstressed in its unbound state.

It should be noted that the association rate can be force dependent, since the bond stretching required for rebinding may
increase with f leading to a corresponding increase of binding potential barrier. This effect is proportional to a square of
the applied force, and is small under typical experimental conditions [23]. Correspondingly, the dissociation and association
rates r(n) and g(n) entering Eq. (1) can be written as

r (n, f ) = nr
(
f
n

)
, g (n,Nt) = kon (Nt − n) (3)

where the association rate is assumed to be proportional to the number of available, unbound bondswith an association rate
kon. In the calculations presented below the values of kc/ks, xc/xs have been chosen to fit lifetimes of bonds between FNIII7−10
and α5β1 [18,24] and bonds between sPSGL-1 and L-selectin bonds [9,25]. Eq. (1) should be supplemented by boundary
conditions at n = 0 and n = Nt . In most biological and artificial systems the completely dissociated state is prevented from
re-association, and therefore in the following we set g (0) = 0 in order to model an absorbing boundary at n = 0. At n = Nt
the association rate given by Eq. (3) equals zero that guarantees n ≤ Nt and represents a reflecting boundary condition. The
temporal evolution of the number of closed bonds (mean cluster size), ⟨n⟩, is given by:

d ⟨n⟩
dt

=

Nt∑
n=1

[
n
dP (n, t)

dt

]
= ⟨g (n, t)⟩ − ⟨r (n, t)⟩ (4)
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