
Physica A 509 (2018) 448–458

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

A stochastic Feline immunodeficiency virus model with
vertical transmission
Bo Yang
School of Digital Media, Lanzhou University of Arts and Science, Lanzhou, 730000, PR China

h i g h l i g h t s

• A stochastic Feline immunodeficiency virus model (FIV) with vertical transmission is developed.
• The stochastic extinction and persistence of the FIV are given.
• The vertical transmission may be beneficial to the persistence of the FIV.
• Decreasing the vertical transmission is useful to control the spread of the FIV.
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a b s t r a c t

In this paper, we formulate a stochastic Feline immunodeficiency virus (FIV) model with
vertical transmission to investigate the effect of environmental fluctuations on the FIV
dynamics.We prove that the threshold parameterRs

0 can be used to identify the stochastic
extinction and persistence of the FIV: ifRs

0 < 1, the FIVwill be extinct a.s., while ifRs
0 > 1,

the FIV will persist a.s. Epidemiologically, we find that large environmental fluctuations
can suppress the outbreak of FIV, and the vertical transmission may be beneficial to the
persistence of the FIV. Thus, in order to control the spread of the FIV, wemust decrease the
vertical transmission.

© 2018 Published by Elsevier B.V.

1. Introduction

Feline immunodeficiency virus (FIV) causes an immune deficiency in cats that is very similar to the acquired immune
deficiency syndrome in humans [1]. The lentivirus infections of cats (FIV) appear to bear the closest similarity in their
pathogenesis to HIV infection and AIDS [2]. In order to understand the dynamics of the FIV, Ducrot et al. [3] established
the following model:⎧⎪⎪⎪⎨⎪⎪⎪⎩

dS
dt

= bS + θbI I − (m + k(S + I))S − βSI,

dI
dt

= βSI + (1 − θ )bI I − (m + k(S + I))I − αI,

S(0) = S0 > 0, I(0) = I0 > 0,

(1.1)

where S(t) and I(t) are susceptible and infectious cats, respectively, and N(t) = S(t) + I(t). All parameters are nonnegative,
b and bI are the natural birth rate for S(t) and I(t), respectively, and bI (0 ≤ bI ≤ b, ) implies the vertical transmission,
0 ≤ θ ≤ 1 is the proportion of offspring born from an infective individual that is susceptible at birth, 1/α > 0 the average
time spent in the infectious class,m+ kN the mortality rate of the cat population N , andm the natural death rate, b−m > 0
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the intrinsic growth rate of cat populations N(t) in the absence of resource limits, βSI the bilinear horizontal transmission,
and β the effective per-capita contact rate of infective individuals.

In [3], Ducrot et al. showed that model (1.1) admits a unique endemic equilibrium E∗
= (S∗, I∗) with 0 < S∗, I∗ <

b − m
k

,
which is globally asymptotically stable if θ > 0 and

T dd
0 :=

β(b − m)
k[b + α − (1 − θ )bI ]

> 1.

Simple calculations show that, T dd
0 > 1 is equivalent to the basic reproduction number

R0 :=
β(b − m)
k(b + α)

+
(1 − θ )bI
b + α

> 1. (1.2)

On the other hand, stochastic noise plays an indispensable role in transmission of diseases, especially in a small
total population. And it seems more practical to consider stochastic epidemic models [4–19]. For studying the effect of
environmental variability on the virus dynamics of the FIV, based on the results of [3], Wang and co-workers [20,21] studied
the following stochastic differential equations (SDE) model{

dS = [bS − (m + k(S + I))S − βSI]dt − σSIdB(t),
dI = [βSI + bI I − (m + k(S + I))I − αI]dt + σSIdB(t), (1.3)

where B(t) is the standard independent one-dimensional Wiener process defined over the complete probability space(
Ω,F, {Ft}t≥0, P

)
with a filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is right continuous and F0 contains all

P-null sets).
Obviously,model (1.3) is a stochastic version corresponding to the special case of θ = 0 ofmodel (1.1). And there naturally

comes a question: what is the effect of θ on the stochastic dynamics of the FIV? Themain focus of this paper is to investigate
the virus dynamics of the following SDE model corresponding to the deterministic model (1.3):{

dS = [bS + θbI I − (m + k(S + I))S − βSI]dt − σSIdB(t),
dI = [βSI + (1 − θ )bI I − (m + k(S + I))I − αI]dt + σSIdB(t). (1.4)

The rest of this paper is organized as follows: In Section 2, we show the existence and uniqueness of the global positive
solution of (1.4). In Section 3, we provide the conditions which will cause disease to die out. In Section 4, by means of
Lyapunov function, we prove that the persistence of the infection of model (1.4). In the last section, Section 5, we provide a
brief discussion and summary of main results.

2. Existence and uniqueness of the global positive solution

Theorem 1. For any initial condition (S0, I0) ∈ R2
+
, there is a unique solution (S(t), I(t)) of the SDE model (1.4) for all t ≥ 0 and

the solution will remain in R2
+
with probability one, namely, (S(t), I(t)) ∈ R2

+
for all t ≥ 0 almost surely (a.s.).

Proof. Since the coefficients of the SDEmodel (1.4) are locally Lipschitz continuous, for any initial value (S0, I0) ∈ R2
+
, there

is a unique local solution (S(t), I(t)) on t ∈ [0, τe), where τe is the explosion time. To show that this solution is global in R2
+
,

we need to show that τe = ∞ a.s. We choose a sufficiently large non-negative number r0 such that both of S0 and I0 lie in
the interval [1/r0, r0]. For each integer r ≥ r0, we can define the stopping time

τr = inf {t ∈ [0, τe) : S(t) /∈ (1/r, r) or I(t) /∈ (1/r, r)} ,

where inf ∅ = ∞ (as usual ∅ denotes the empty set). Clearly, τr is increasing as r → ∞. Set τ∞ = limt→∞ τr , then τ∞ ≤ τe
a.s.

To prove that τe = ∞, it is sufficient to prove that τ∞ = ∞ a.s. If possible, let us assume that the statement is false. Then
there exist two constants T > 0 and ϵ ∈ (0, 1) such that

P{τ∞ ≤ T } > ϵ. (2.1)

Hence we can find an integer r1 ≥ r0 such that

P{τr ≤ T } ≥ ϵ. (2.2)

for all r ≥ r1. Define a C2-function V : R2
+

→ R+ by

V (S, I) = (S + 1 − log S) + (I + 1 − log I).

The positivity of V (·) for all (S, I) ∈ R2
+
can be obtained by the fact (z+1− log z) ≥ 0 for all z > 0. Calculating the differential

of V along the solution trajectories of the system (1.4) by using Itô’s formula, we get

dV ≤ [bS − b + θbI I + 2m + 2k(S + I) + βI + bI I − bI + θbI + α + σ 2
]dt

−σ I(S − 1)dB1 + σS(I − 1)dB2
≤ [(2m + α + σ 2

+ (2k + b))S + (β + 2k + (1 + θ )bI )I]dt − σ I(S − 1)dB + σS(I − 1)dB.
(2.3)
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