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h i g h l i g h t s

• The model exhibits bistability phenomenon.
• Cross fractional diffusion can create Turing patterns.
• The smaller order of fractional diffusion is, the more easily Turing instability occurs.
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a b s t r a c t

In this work, we study a diffusive predator–prey model with mutual interference among
the predators while searching for food.We prove that themodel exhibits bistability, which
indicates that there is no patterns for our model. When proper cross fractional diffusion
terms are introduced in the model, the Turing pattern emerges when cross fractional
diffusion coefficients fall into some domain.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Volterra (1926) first proposed a simple model for the predation of one species by another to explain the oscillatory
levels of certain fish catches in the Adriatic. Since then, qualitative and quantitative analysis on the predator–prey
model is of practical and theoretical significance and has been an important area in ecology and mathematical biology
(see, e.g. [1]).
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In [2], Wang et al. considered a predator–prey model in a bounded domainΩ ⊂ RN with no-flux boundary condition:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

− d1∆u = u (α − βu)−
cuv

mv + 1
, (x, t) ∈ Ω × (0, ∞) ,

∂v

∂t
− d2∆v =

suv
mv + 1

− rv, (x, t) ∈ Ω × (0, ∞) ,

∂u
∂ν

=
∂v

∂ν
= 0, (x, t) ∈ ∂Ω × (0, ∞) ,

u (x, 0) = u0 (x) ≥ 0, v (x, 0) = v0 (x) ≥ 0, x ∈ Ω.

(1.1)

Here u (x, t) and v (x, t) stand for the density of prey and predator, respectively.Ω ⊂ RN is a bounded domain with smooth
boundary ∂Ω and ν is the outward unit normal on ∂Ω. Theno-flux boundary condition indicates that there is zero population
flux across the boundary. Model (1.1) is based on the following assumptions:

(A1) The growth rate of the prey in the absence of the predator is the traditional logistic form: u (α − βu).
(A2) The functional response of the predator is cu

mv+1 . c is the capture rate [3] and m denotes a reduction in the predation
rate at high predator densities due to mutual interference among the predators while searching for food (see [4,5]).

(A3) s is the conversion rate and r represents the natural death rate of the predator. All parameters of the reaction term are
positive, the diffusion coefficient di ≥ 0 (i = 1, 2) .

System (1.1) has the trivial steady state (0, 0) and the semi-trivial steady state
(
α
β
, 0

)
. It has a positive constant steady

state if and only if sα > rβ , in which case it is uniquely given by

u∗
=

s (mα − c)+

√
s2 (mα − c)2 + 4cmrsβ
2msβ

, v∗
=

su∗
− r

mr
.

Wang et al. [2] proved that the positive steady state (u∗, v∗) is globally asymptotically stable for the corresponding ODE
model of (1.1). Taking into account additive Allee effect of the prey, they further investigated dynamical behavior of (1.1)
with additive Allee effect. The authors found that under some conditions, additive Allee effect and diffusion together can
produce Turing instability.

In 1952, Turing [6] suggested that interacting chemicals at a homogeneous steady state can be destabilized by spatial
diffusion, as explored via a system of two coupled reaction–diffusion equations. This kind of instability is called the Turing
instability or the diffusion driven instability. Starting with the Turing’s idea, spatial and temporal pattern formations of
interacting species in biological, social, chemical, hydrodynamical system, etc., have been standing as a central object of
research in recent decades (see e.g. [7–14]).

One of the purpose of this article is to further explore Turing’s diffusion induced instability for the corresponding cross
fractional diffusion system of (1.1). In Section 2, we will show that system (1.1) has a bistable phenomenon, that is, when
sα ≤ rβ , there is no positive constant steady state, and the semi-trivial steady state

(
α
β
, 0

)
is globally asymptotically stable.

Thus the predator population cannot evade extinction while the prey population stabilizes at the level α
β
. But if sα > rβ ,

a unique positive constant steady state denoted by (u∗, v∗) exists and is globally asymptotically stable . This suggests that
Turing instability does not occur for system (1.1). In Section 3, we show that cross fractional diffusion makes the unique
positive constant steady state unstable.

2. Global asymptotical stability

In this section we prove the global asymptotical stability of the semi-trivial steady state
(
α
β
, 0

)
and the positive constant

steady state (u∗, v∗).
We first show a lemma.

Lemma 2.1. Let a, b be positive constants, φ ∈ C1 ([a,∞)) and φ be bounded from below. Suppose thatψ ≥ 0,
∫

∞

a h(t)dt < ∞

and

φ
′

(t) ≤ −bψ(t) + h(t). (2.1)

If either ψ ∈ C1 ([a,∞)) and ψ
′

(t) ≤ k in [a,∞) for some constant k > 0, or ψ ∈ C δ ([a,∞)) and ∥ψ∥Cδ([a,∞)) ≤ k for some
constants 0 < δ < 1 and k > 0, then limt→∞ ψ(t) = 0.

Notice that system (1.1) has a unique non-negative global solution (u, v). By the maximum principle we know that if
u0 (x) ̸= 0 and v0 (x) ̸= 0, then u (x, t) > 0 and v (x, t) > 0 onΩ for t > 0. It is easy to show from the first equation of (1.1)
that

0 < u (x, t) ≤ max
{
α

β
, max

Ω

u0 (x)
}

:= A, ∀x ∈ Ω, t ≥ 0. (2.2)
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