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h i g h l i g h t s

• Seismic frequencies–magnitudes follow a distribution connected to the superstatistics form.
• It is possible to obtain, with a new Frequency–magnitude model, an alternative form for the b Gutenberg–Richter parameter.
• It is possible to obtain, with a new Frequency–magnitude model, excellent goodness-of-fit to samples data from Chilean earthquakes.
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a b s t r a c t

Weoutline amodel developed fromaBayesian approach,which can be connected, from the
perspective of Mathai’s pathway model, with the superstatistics representation presented
by Beck andCohen in 2002,which has beenwidely applied in non-equilibriumand complex
systems. We evaluated goodness-of-fit to the observed frequency–magnitude distribution
before and after major earthquakes occurred in Chile, from 2010 year to date. This new
model, allows us to obtain an alternative Gutenberg–Richter b parameter, through a wider
range of magnitudes.
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1. Introduction

Since the proposal submitted by Gutenberg and Richter in [1], through the empirical formula:

logN = a − bm (1)

which provides the number of earthquakes N , with magnitude≥ m, observed in certain region over a certain period of time,
(a and b are positive parameters), many efforts have been made to find a more complete model.

In recent years, Sotolongo-Costa and A. Posadas [2], through fragment size distribution (produced by breakage during
tectonic activities) and the Tsallis statistics, also proposed a relation for frequency–magnitude distribution. Subsequently
other authors, as in [3], have produced new models based on the original works of Sotolongo-Costa and A. Posadas. In
addition, several applications have beenmade through that perspective, such as [4] and [5], where non-extensive properties
for behavior and evolution of seismic systems are addressed in different regions of our planet.

We derived our model using a Bayesian approach, and this, from the mathematical statistics point of view, can be
connected to the Beck–Cohen formalism (which they named superstatistics [6]), through theMathai’s pathwaymodel [7]. In
Section 2, we present the fundamental Bayesian framework, and the step-by-step model construction we followed, as well
as posterior goodness-of-fit tests with respect to experimental data. In Section 3, we discuss the implications, analysis and
conclusions.
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2. Fit model

2.1. Bayesian framework

Marginalization is a very important technique applied in the Bayesian inference process, by use of which we may obtain
an unconditional model for a random observable variable X , which depends of a parameter Θ .

Marginalization can be realized assuming Θ itself as a random variable, which can take values Θ = {θ0, θ1, . . . ., θm},
with the probability distribution given by a function P(Θ).

Each of the joint probabilities we know are given by the product rule,

P(xi, θj) = P(xi|θj) P(θj) (2)

Thus, in general, forX andΘ continuous randomvariables, and given our knowledge I of the system,marginal distribution
P(X) is given by

P(X) =

∫
P(X |Θ, I) P(Θ|I) dΘ (3)

This marginalization incorporates the uncertainty associated with assigning a specific value to the Θ parameter, as well
as the intrinsic uncertainty present in the observed system’s properties.

2.2. Model construction

Take a geographic region that has some seismic activity, where the magnitudem is a scalar variable related to the energy
released in each seismic event.

We use an expression that is compatible with the Gutenberg–Richter relation of magnitudes (pertinence can be seen
in [8]), and assume that it is suitable for the considered geographic region,

f (m) = e−β(m−m0) (4)

where m0 is the minimum threshold for the magnitudes considered. The β parameter must take a positive value, greater
than zero, and its relation to the Gutenberg–Richter parameter b is:

b =
β

ln 10
(5)

This parameter b, of the Gutenberg–Richter magnitude–frequency relationship, has been the subject of many studies,
since it is associated with the intensity of the seismic activity observed in the region of interest.

We want to determine, by marginalization, the unconditional frequency distribution of magnitudes m, considering the
information I we have about this type of system.

Note that if the system information is given by I0, then

P(m|I0) = ⟨δ
(
m(−→x ) − m

)
⟩I0 (6)

where −→x is the vector of all physical parameters hidden at the time we observe the system, which are involved in the
manifestation of observed seismic activity. By not knowing all of them, makes it impossible for us to accurately predict
the values of m each time an event occurs. It could be parameters that account for the physical process of elastic strain
accumulation and the triggering mechanism, or other processes involved in mechanical stresses due to plate movements
(e.g. [9,10]). Thus,

P(m|I0) = f
(
m(−→x )

) ∫
d−→x δ

(
m(−→x ) − m

)
(7)

that is, P(m|I0) = f
(
m(−→x )

)
Ω(m), where Ω(m) must be the density of states.

Since (4) has a similar form to the Boltzmann distribution (as it can also be seen in [11] within a context of earthquake
statistics), and also, the magnitude m is related to the release of energy, then we propose Ω ∼ (m − m0)

3n
2 −1 to obtain a

normalized conditional density function ofm given β , so we have

p(m|β) =
e−β (m−m0)(m − m0)

3
2 n−1β

3
2 n

Γ ( 32n)
(8)

where n is related to the system’s degree of freedom. On the other hand, we hypothesize that β has a gamma distribution
(relevance of the chosen distribution can be seen in [12,13]). Thus,
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