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a b s t r a c t

This paper focuses on a class of generalized Ginzburg–Landau equations with random
switching. In our formulation, the nonlinear term is allowed to have higher polynomial
growth rate than the usual cubic polynomials. The random switching is modeled by
a continuous-time Markov chain with a finite state space. First, an explicit solution is
obtained. Then properties such as stochastic-ultimate boundedness and permanence of the
solution processes are investigated. Finally, two-time-scale models are examined leading
to a reduction of complexity.
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1. Introduction

This paper focuses on a class of generalized Ginzburg–Landau equations, namely, stochastic Ginzburg–Landau equations
in random environmentmodeled by a random switching process. In contrast to thewell-knownGinzburg–Landau equations
with random disturbances considered in the literature, higher order nonlinearity is allowed. More importantly, the systems
are in a random environment that is modeled as a random discrete event process given by a switching process. Thus, the
systemunder considerationmay be considered as a hybrid system inwhich continuous dynamics anddiscrete events coexist.
Our effort in this paper is devoted to obtaining existence anduniqueness of solutions, permanence of solutions, and reduction
of complexity using two-time-scale formulation.

In 1950, Ginzburg and Landau proposed a class of deterministic differential equations to describe phase transitions for
superconductivity in [1]. They observed the existence of two types of superconductors depending on the energy of the
interface between the normal and superconducting states. Their paper has led to significant developments to the nowadays
known Ginzburg–Landau theory. Because of its prevalence in applications, this class of equations has been attracting much
attention in the past decades. For instance, Ginzburg–Landau equations have been used in many areas including the theory
of bistable systems, chemical turbulence, phase transitions in non-equilibrium systems, nonlinear, optics with dissipation,
thermodynamics, and hydrodynamic systems, etc.; see [2–4] and references there in.

Because random noise is often unavoidable, taking into consideration of stochastic disturbances is necessary. To account
for the noise effect, stochastic Ginzburg–Landau equations have received much attention in recent years. For example,
Neiman and Geier [5] studied stochastic resonance in an over-damped bistable system driven bywhite and harmonic noises.
In [6,7], delay stochastic Ginzburg–Landau equations were considered, whose solutions describe the stochastic evolution of
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the position of a particle trapped in a double well potential in the presence of a time delayed force and Gaussian white noise.
Subsequently, in [8], Kloeden and Platen provided an explicit solution to the Ginzburg–Landau equation given by

dx(t) = [(a +
σ 2

2
)x(t) − bx3(t)]dt + σx(t)dW (t), (1.1)

whereW (t) is a standard Brownianmotion, a, σ , and b > 0 are constants. Dung [9] studied a number of qualitative properties
of the solution to a stochastic Ginzburg–Landau equation with impulsive effects.

Because of the rapid growth in science and technology, networked systems come into being. The new challenges call
for more sophisticated mathematical models. One of the important advances is the development of novel models of hybrid
systems inwhich continuous dynamics and discrete events coexist and interact. To consider both randomuncertainty due to
Brownian motion type of disturbances and stochastic environment represented by jump processes taking values in a finite
set, switching diffusions have gained much needed attention recently; see [10,11] among others. Such switching dynamic
systems are nonlinear stochastic systems with another stochastic source depicting the random environment changes as
switching processes. The presence of both continuous dynamics anddiscrete events enables one to describe complex systems
and their inherent uncertainty and randomness in the environment effectively.

Aiming at enlarging the applicability and suitability for a wider range of problems, this paper focuses on a class of real-
valued systemsknownas generalized stochasticGinzburg–Landau equationswith regime switching. It is a generalizedmodel
since the nonlinear terms have faster growth rates than that of the usual Ginzburg–Landau equations. More importantly, we
use a randomly switching process to model stochastic environment and other random factors that are not covered in the
usual stochastic differential equations.

The rest of the paper is organized as follows. Section 2 presents the generalized Ginzburg–Landau equations with
switching that we wish to study. Also derived in this section is an explicit solution. Section 3 investigates properties such
as stochastically ultimate boundedness and permanence of the solution processes. These results may shed some light for
the subsequent study on superconductivity and other desired properties. Section 4 examines a class of systems with two-
time scales. The main idea here is to reduce the computational complexity. Finally, Section 5 gives some further remarks to
conclude the paper.

2. Formulation and existence of solution

2.1. Formulation

LetW (·) be a real-valued Brownianmotion, and α(·) be a continuous-timeMarkov chain that is independent ofW (·) with
a state spaceM = {1, . . . ,m} and generator Q = (qij). Recall, Q satisfies the conditions qij ≥ 0 for i ̸= j and

∑m
j=1qij = 0 for

each i ∈ M. Note that for the continuous-time Markov chain α(t),

P{α(t + δ) = j|α(t) = i} =

{
qijδ + o(δ), if i ̸= j,
1 + qiiδ + o(δ), if i = j.

The objective of this paper is to treat the generalized Ginzburg–Landau equations with random switching in which the
coefficients of the systems depend on an additional time variable. Thus the coefficients of the systems are time varying in
addition to the time-varying and jump properties due to the Markov chain. Consider the equation

dX(t) =

[
a(t, α(t))X(t) − b(t, α(t))Xk+1(t)

]
dt + σ (t, α(t))X(t)dW (t), (2.1)

where k ≥ 2 is an integer. It then follows that the associated generator L is given by

Lf (t, x, i) =
∂ f (t, x, i)

∂t
+ (a(t, i)x − b(t, i)xk+1)

∂ f (t, x, i)
∂x

+
1
2
σ 2(t, i)x2

∂2f (t, x, i)
∂x2

+

m∑
j=1

qijf (t, x, j),
(2.2)

for each i ∈ M, where f (·, ·, ·) : [0, ∞) × R × M ↦→ R such that for each i ∈ M, f (·, ·, i) ∈ C1,2. That is, f has continuous
partial derivative with respect to t , and continuous partial derivative with respect to x up to the second order.

2.2. Explicit solution

In this section, we demonstrate that (2.1) has a global explicit solution that is positive for t ≥ 0.

(A1) For each i ∈ M, a(t, i), b(t, i) and σ (t, i) are bounded integrable functions defined on [0, +∞) and b(t, i) ≥ 0.

Theorem 2.1. Assume (A1). Then for any initial condition x0 := X(0) > 0, there is a unique positive solution of (2.1) on t ≥ 0
explicitly given by

X(t) =
exp(Γ (t))[

1
xk0

+ k
∫ t
0 b(s, α(s)) exp(kΓ (s))ds

] 1
k
, (2.3)
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