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h i g h l i g h t s

• Brownian motion of a charged particle in a magnetic field.
• Transition from monotonic to oscillatory behaviour.
• Transition independent of memory kernel.
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a b s t r a c t

We investigate the Brownian motion of a charged particle in a magnetic field. We study
this in the classical and quantum domains. In both domains, we observe a qualitatively
interesting transition of the mean square displacement from a monotonic to a damped
oscillatory behaviour as one increases the strength of the magnetic field. We notice that
these features of themean square displacement are robust and remain essentially the same
for an Ohmic dissipation model and a single relaxation time model for the memory kernel.
The predictions stemming from our analysis can be tested against experiments in trapped
cold ions.

© 2018 Published by Elsevier B.V.

1. Introduction

The problem of a Brownian particle suspended in a liquid subject to thermal fluctuations has been studied extensively [1–
4]. More recently there has been work in the area of a Brownian particle undergoing diffusion driven by quantum
fluctuations [5–9].

In this paper, we are interested in studying the diffusion behaviour of a charged particle in a magnetic field. There have
been two approaches towards solving this problem. Leggett et al. [8,10,11] have used the Feynman Vernon path integral
approach in which they have solved the dynamics of a charged particle in a magnetic field in the presence of an Ohmic
bath. Subsequently, Li et al. [12,13] have approached the problem via a quantum Langevin equation which corresponds to a
reduced description of the system in which the coupling with the heat bath is described by two terms: an operator valued
random force F (t) with mean zero and a mean force characterized by a memory function µ(t). In this paper we follow the
approach of Refs. [12,13] since it is naturally suited to addressing the question of our interest: the time evolution of themean
square displacement of a charged particle in a magnetic field in the presence of viscous dissipation in the high temperature
classical domain and the low temperature quantum domain.
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In recent years there has been quite a lot of interest in this area [9,12–20]. In particular, in Ref. [20] the low temperature
thermodynamics has been discussed in the context of dissipative diamagnetism. In contrast, our focus has been to investigate
themean square displacement growth of a charged particle in amagnetic field. Herewe study in detail the interplay between
the effect of the magnetic field and damping effects due to dissipation. In particular, a particle of charge q and mass m in a
magnetic field B, moves in a circular orbit at a rate set by the cyclotron frequency ωc = qB/mc , where c is the speed of light.
The friction coefficient γ provides a rate γ −1 of dissipation.We probe various different regimes of these two competing time
scales both in the high temperature classical domain and the low temperature quantum domain and analyse the growth
of the mean square displacement in these regimes. Furthermore, we discuss experimental implications of our theoretical
results. In particular, to test our predictions experimentally one can proceed as follows [21–23]. One can consider cold atom
experiments with hybrid traps [24] for ions and neutral atoms and explore the Brownian motion of a charged particle in the
presence of a magnetic field induced by Helmholtz coils.

The paper is organized as follows. In Section 2we solve the Quantum Langevin Equation for a charged particle in a viscous
medium in the presence of a magnetic field [12,13]. In Section 3 we present an analytical expression for the mean square
displacement.We then study the high temperature classical domain and probe two regimes — a viscosity dominated regime
and a magnetic field dominated regime. We do a similar analysis in the low temperature quantum domain. We analyse the
growth of the mean square displacement using two different memory kernels — the Ohmic, memory free kernel, and the
single relaxation time kernelwhich has nontrivialmemory.We find that our results are robust and independent of the details
of the kernel. We finally end the paper with some concluding remarks in Section 4.

2. Quantum Langevin equation in the presence of a magnetic field

The quantum generalized Langevin equation of a charged particle in the presence of a magnetic field is given by [12,13]

m¨⃗r(t) = −

∫ t

−∞

µ(t − t ′)˙⃗r(t ′)dt ′ +
q
c
(˙⃗r(t) × B⃗)

+ F⃗ (t) (1)

where,m is themass of the particle,µ(t) is thememory kernel, q is the charge, c is the speed of light, B⃗ is the appliedmagnetic
field and F⃗ (t) is the random force with the following properties [6]
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Here, α, β = x, y, z, and δαβ is the Kronecker delta function, such that

δαβ =

{
1 if α = β

0 if α ̸= β

µ(ω) =
∫

∞

0 dtµ(t)eiωt . Notice that µ(t) = 0 for t < 0. This follows from causality. Eqs. (3) and (4) are obtained from the
Fluctuation–Dissipation Theoremwhich relates the dissipative and fluctuating parts of the quantum Langevin equation (Eq.
(1)). The dissipative part is characterized by thememory kernelµ(t), and the fluctuating part is characterized by the random
force F⃗ (t).

We assume that the magnetic field is directed along the z−axis, i.e. B⃗ = (0, 0, B). Then we can write Eq. (1) in terms of
components as follows:

mẍ = −

∫ t

−∞

µ(t − t ′)ẋdt ′ +
q
c
ẏB + Fx(t) (5)

mÿ = −

∫ t

−∞

µ(t − t ′)ẏdt ′ −
q
c
ẋB + Fy(t) (6)

The motion along the z−axis is the same as that of a free particle. The motion in the x–y plane is affected by the magnetic
field strength. We restrict our analysis to the x–y plane and study the Brownian motion of a charged particle in a magnetic
field.
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