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h i g h l i g h t s

• Branching and annihilating random walks with power-law branchings are considered.
• The critical spreading dynamics in d=1 is probed using finite-time scaling.
• The system presents a non-equilibrium phase transition with continuously varying exponents.
• Changes in the universality class are identified even within the effective diffusive regime.
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a b s t r a c t

We investigate the critical spreading of the parity conserving annihilating random walks
model with Lévy-like branching. The random walks are considered to perform normal
diffusion with probability p on the sites of a one-dimensional lattice, annihilating in pairs
by contact. With probability 1 − p, each particle can also produce two offspring which are
placed at a distance r from the original site following a power-law Lévy-like distribution
P(r) ∝ 1/rα . We perform numerical simulations starting from a single particle. A finite-
time scaling analysis is employed to locate the critical diffusion probability pc belowwhich
a finite density of particles is developed in the long-time limit. Further, we estimate the
spreading dynamical exponents related to the increase of the average number of particles at
the critical point and its respective fluctuations. The critical exponents deviate from those
of the counterpart model with short-range branching for small values of α. The numerical
data suggest that continuously varying spreading exponents sets up while the branching
process still results in a diffusive-like spreading.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Dynamical phase transitions present remarkable similarities with the usual equilibrium phase transitions observed in
condensed matter systems [1,2]. They present a critical point which can be tuned by changing the system parameters and
several quantities become singular at the transition with characteristic critical exponents that can be classified into a small
group of universality classes. These exponents also satisfy a set of scaling relations. However, these systems usually follow
dynamical stochastic rules that have no supporting Hamiltonian. As such, the fluctuation–dissipation theorem does not
hold in general, and the critical exponents of the susceptibility and order-parameter fluctuations are distinct. Also, the
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absence of a natural partition function impairs the direct use of the Yang–Lee formalism, although some attempts along
this direction have been proposed in the literature [3–7]. The most common dynamic phase transition is that between a
statistically stationary active state and an absorbing vacuum state [1,2]. The simplestmodel presenting this kind of transition
is named the contact process which presents competing death and branching processes. For small branching rates any initial
configuration is driven to the absorbing vacuumstate. Above a critical branching, the systemevolves to a stationary statewith
a finite density of particles. This transition belongs to the universality class of directed percolation (DP), which is the most
common class of absorbing phase transitions [1,2,8,9]. For the absorbing state transition taking place in a one-dimensional
lattice, some relevant critical exponents are β = 0.2767(4), γ = 0.5438(13), ν⊥ = 1.0972(6), and ν∥ = 1.7334(10) [10–12],
associated with the order parameter (density of particles), its fluctuations, the spatial and temporal correlation lengths,
respectively. Other universality classes have been identified as, for example, for co-existing diffusive populations with a
conserved field [13–19].

Branching and annihilating randomwalks (BARW) distributed in a lattice also present a dynamic transition between the
vacuumand the active states [20,21]. In thismodel, particles candiffusewith probability por branchwith the complementary
probability (1 − p). During the branching process, a number n of offspring are generated. Particles annihilate each other
when they try to occupy an already occupied site, either during the diffusion or branching processes. Whenever the number
of offspring is odd, the absorbing state transiting belongs to the usual directed percolation universality class [20,22–24]. On
the other hand, for an even number of offspring, the parity of the number of particles becomes a conserved quantity, which
drives the system to a new universality class [20,25]. It is interesting to stress that the system always evolves to the vacuum
state for the particular case of BARW in a one-dimensional lattice with n = 2 offspring placed on the two nearest neighbor
sites [26]. An active state is only stable for n ≥ 4 or for n = 2 with asymmetric branching [27]. In this case, the critical
exponents deviate substantially from those of DP, with β = 0.92(3), γ = 0.00(5), ν⊥ = 1.84(6), and ν∥ = 3.25(10) [25].

Long-ranged processes are known to influence the critical behavior of equilibrium and non-equilibrium phase transi-
tions [28,29]. One of the most common forms to introduce a long-range process in BARWs is to consider that the particles
diffuse performing Lévy flights. In this case, instead of just jumping to neighboring sites, the particles can jump to a site
placed at a distance r following a power-law distribution P(r) ∝ 1/rα . Usually, the power law exponent α is written as
α = d + σ , with d being the lattice dimensionality. For the one-dimensional contact process with Lévy-like interactions,
it has been shown that the critical behavior remains in the DP universality class for σ > σc , with σc ≃ 2.07, i.e., slightly
above the regime of effectively super-diffusive dynamics [29,30]. Deviations from DP were reported for 1/2 < σ < σc with
the exponents continuously varying with the Lévy exponent. These assume mean field-values for σ < 1/2. The influence of
Lévy flights on the one-dimensional parity conserving BARWhas also been investigated for the particular case of asymmetric
n = 2 offspring [31]. The critical diffusion probability reaches pc = 1 for σ = 3/2 (α = 5/2) with the system remaining in
the active state for any finite branching probability for σ < 3/2 (α < 5/2). Continuously varying exponents takes place for
σ > 3/2 up to a critical value of σ . Although the numerical data did not allow to firmly state this bound, field theoretical
arguments suggests σc ≃ 2.5 for the parity-conserving DP class [29]. Above this bound, the exponents are equivalent to
those of parity conserving BARWs with short-range interactions. The critical moment ratio of the order parameter was also
shown to vary continuously with α [32]. However, the critical exponents reported were all associated with the long-time
convergence to the absorbing state or to the ultimate stationary state. Studies of the critical spreading dynamics for the
parity conserving BARWmodel are still missing.

In the present work, we advance in the characterization of the absorbing state phase transition exhibited by parity
conserving BARWs by probing its critical spreading dynamics in the presence of long-ranged Lévy-like flights. We will focus
on the particular case of asymmetric Lévy branching with n = 2 offspring. Starting with just one particle placed in a one-
dimensional lattice, the system’s trapping by the vacuum state will be avoid, thus allowing us to perform an accurate finite-
time scaling analysis to compute the relevant spreading critical exponents associated with the average number of particles
and its fluctuation. The dependence of the spreading critical exponents on the Lévy exponent will also be reported.

The manuscript is organized as follows: In Section 2 we define the model system considered, provide a detailed
description of the simulations made, define the measured quantities and the finite-time scaling analysis employed to
compute the spreading critical exponents. In Section 3weprovide our results for the critical spreading of the average number
of particles and the time-evolution of its fluctuations, reporting the dependence of the critical parameters with the Lévy
exponent. Finally, we summarize and draw our main conclusions and perspectives in Section 4.

2. BARWwith parity conservation and Lévy-like branching

In the BARW model, particles are distributed on a given lattice an can diffuse or generate n offspring. Double occupancy
is forbidden and, consequently, particles annihilate in pairs when the dynamical processes drive two of them to the same
site. In an elementary time step, a particle is chosen at random. It diffuses with probability p. Here, we will consider that
the particle executes a short-ranged diffusion to one of its neighboring sites, chosenwith equal probability. With probability
(1 − p) the particle remains on its position but generates n offspring. Here we will consider the case of asymmetric n = 2
branching forwhich both offspring are placed at the same side of the particle (chosen at random). However, instead of placing
the offspring on the nearest neighborhood, they are placed at distance r and r + 1 from the original site. The distance r is
randomly chosen fromapower-law Lévy-like distribution P(r) ∝ 1/rα , withα being the exponent controlling the long-range
character of the branching process.
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