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h i g h l i g h t s

• The basic principles of stochastic thermodynamics are developed.
• The thermodynamic uncertainty relation between dissipation, currents and their dispersion is introduced.
• Examples for thermodynamic inference are presented.
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a b s t r a c t

In these lecture notes, the basic principles of stochastic thermodynamics are developed
startingwith a closed system in contactwith a heat bath. A trajectory undergoesMarkovian
transitions between observable meso-states that correspond to a coarse-grained descrip-
tion of, e.g., a biomolecule or a biochemical network. By separating the closed system into
a core system and into reservoirs for ligands and reactants that bind to, and react with
the core system, a description as an open system controlled by chemical potentials and
possibly an external force is achieved. Entropy production and further thermodynamic
quantities defined along a trajectory obey various fluctuation theorems. For describing
fluctuations in a non-equilibrium steady state in the long-time limit, the concept of a
rate function for large deviations from the mean behavior is derived from the weight of
a trajectory. Universal bounds on this rate function follow which prove and generalize the
thermodynamic uncertainty relation that quantifies the inevitable trade-off between cost
and precision of any biomolecular process. Specific illustrations are given for molecular
motors, Brownian clocks and enzymatic networks that show how these tools can be used
for thermodynamic inference of hidden properties of a system.

© 2017 Elsevier B.V. All rights reserved.

1. Introductory remarks

Over the last about ten to twenty years, stochastic thermodynamics has emerged as a comprehensive framework for
describing small driven systems in contact with (or embedded in) a heat bath like colloidal particles in laser traps or
biomolecules and biomolecular networks. As an essential concept, the notions of classical thermodynamics like work, heat
and entropy production are identified on the level of fluctuating trajectories. The distributions of these quantities obey
various universal exact fluctuation relations.

In the first part of these lecture notes, these conceptswill be developed for a driven systemobeying aMarkovian dynamics
on a discrete set of states which implicitly also contains the case of overdamped motion on a continuous state space usually
described by Langevin equations. Since this part is well established by now, only a few selected references to the original

E-mail address: useifert@theo2.physik.uni-stuttgart.de.

https://doi.org/10.1016/j.physa.2017.10.024
0378-4371/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.physa.2017.10.024
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2017.10.024&domain=pdf
mailto:useifert@theo2.physik.uni-stuttgart.de
https://doi.org/10.1016/j.physa.2017.10.024


U. Seifert / Physica A 504 (2018) 176–191 177

key papers will be given. A more comprehensive guide to the vast literature concerning refinements and theoretical and
experimental case studies, can be found, inter alia, in several recent reviews [1–4].

The second part deals with a more recent development concerning the fluctuations in non-equilibrium steady states
for which a family of inequalities were found among which the most prominent one constrains the mean and variance of
currents in terms of the overall entropy production. This universal relation can also be expressed as the inevitable trade-
off between cost and precision of any thermodynamically consistent process which has been dubbed the thermodynamic
uncertainty relation. Its proof follows fromauniversal bound on the large deviations of any current. Stronger bounds on these
fluctuations follow with somewhat more knowledge about the driving forces and the topology of the underlying network.
With these relations, measured fluctuations allow to infer otherwise hidden properties of these systems. This presentation is
not intended to be an exhaustive review of these recent (and ongoing) developments but rather a pedagogical introduction
to them.

2. Closed system in contact with a heat bath

2.1. Meso-states

Starting on a very general level, we consider a closed systemwithmicro-states {ξ} and energyH(ξ ) in contact with a heat
bath at inverse temperature β . In equilibrium, free energy, internal energy and entropy are given by

F = −(1/β) ln
∑

ξ

exp[−βH(ξ )], E = ∂β (βF ), S = β2∂βF = β(E − F ), (1)

respectively.
We then partition the total phase space into a set of observable meso-states {I}. Each micro-state ξ is assumed to belong

to one and only one meso-state I to which manymicro-states ξ ∈ I contribute. In equilibrium (superscripte), the probability
to find the system in meso-state I is then given by

PI e =

∑
ξ∈I

exp[−β(H(ξ ) − F )] ≡ exp[−β(FI − F )] (2)

where the last equality defines the free energy FI of the state I . This identification is justified, first, since the mean energy in
state I can be expressed as

EI =

∑
ξ∈I

P(ξ |I)H(ξ ) = ∂β (βFI ), (3)

where

P(ξ |I) = exp[−β(H(ξ ) − F )]/PI e = exp[−β(H(ξ ) − FI )] (4)

is the conditional probability for the micro-state ξ given the meso-state I . Second, defining an ‘‘intrinsic’’ entropy SI from FI
as in (1) leads to

SI ≡ β2∂βFI = β(EI − FI ) = −

∑
ξ∈I

P(ξ |I) ln P(ξ |I) ≡ S[P(ξ |I)], (5)

which is the Shannon entropy of the conditional probability.1 With these expressions, in equilibrium, mean energy, entropy
and free energy of the system can also be written as

E =

∑
I

PI eEI , S =

{∑
I

PI eSI

}
+ S[PI e], F =

{∑
I

PI eFI

}
− (1/β)S[PI e], (6)

respectively.

2.2. Trajectory, time-scale separation, transition rates and master equation

In the course of time, the system moves along a trajectory I(t) of meso-states. While in principle any partition into
meso-states is formally possible, such a separation makes physical sense, and will lead to stochastic thermodynamics, if
transitions between meso-states are slow while transitions between the micro-states belonging to one meso-state are fast.
As a necessary condition, obviously, the heat bath has to relax at least as fast. Ideally, the dynamics along such a trajectory
then becomesMarkovian, whichmeans that there is a (constant) transition rate KIJ for the system in state I to jump to state J

1 Throughout this presentation, entropy is dimensionless, i.e., Boltzmann’s constant is set to 1, and S[pi] ≡ −
∑

ipi ln pi denotes the Shannon entropy of
an arbitrary discrete probability distribution.
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