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h i g h l i g h t s

• Examine the correlation between the proportion of leader nodes and convergence rate of leader-following consensus on multiplex
networks.

• The proportion of leaders plays a central role in the convergence rate of consensus for large-scale multiplex networks, regardless of the
topological location of leaders and the topology of intralayer networks.

• The convergence rate of influenced consensus is monotonically increasing with respect to the proportion of leaders.
• Multiplex networks consisted of homogeneous networks are easier to control comparedwith that consisted of heterogeneous networks.
• The optimal control performance can be obtained by evenly selecting leader agents from each layer.
• Our findings shed light on the understanding of efficient propagation of both friendly and malicious influence exerted on multiplex

networks.
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a b s t r a c t

A multiplex network is derived from the interplay between the intralayer and interlayer
networks. This paper examines the performance of controlling consensus dynamics on
multiplex networks via leader-following approach. Regardless of the topological location of
leaders and the topology of intralayer networks, it is shown that the proportion of leaders
plays a central role in the convergence rate of leader-following consensus on multiplex
networks, especially for large networks. We show that the convergence rate of leader-
following multiplex consensus is monotonically increasing with respect to the proportion
of leaders and its upper bound is invariant to the topology of the intralayer network. It turns
out that the Erdős-Rényi random multiplex networks are easier to control compared with
scale-free multiplex networks in terms of convergence rate of leader-following consensus.
The polynomial regression analysis is also employed to fit the correlation between the
proportion of leaders and the convergence rate of leader-following consensus onmultiplex
networks. Our findings shed light on the understanding of propagation of either friendly or
malicious influence exerted on a multiplex network.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The topology of many complex networks exhibits multiple layer structure, such as online social networks, transportation
systems and protein–protein interactions etc. Kivelä et al. [1]. Multiplex networks are representations of multi-layer
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interconnected complex networks where the nodes are the same at every layer. For instance, a social individual can have
accounts ofmultiple online social networks such as Facebook, Twitter and Google plus; a personmay also playmultiple roles
(or characters) in different communities (such as family, company, and club). Multi-modal urban transportation networks
can also be mathematically abstracted as transportation dynamics on top of a multiplex structure. It has been shown that
multiplexity has laid a broad impact on the structure and functionality of complex networks Kivelä et al. [1], Boccaletti et
al. [2]. For instance, understanding brain connectivity from the interplay of functional relationships of brain activities and
anatomical connections between brain areas is one of the most important problems in neuroscience Simas et al. [3]. Many
complex systems can be modeled as interdependent network and one of its fundamental features is that the failure of the
node in one network may trigger the failure of dependent nodes in neighboring networks Buldyrev et al. [4].

The functionality of a complex system derives from the interplay of local behavior of its components and the topology
of inter-component interactions. The local behavior is often termed as protocol when each all the component behave in a
similar manner. Consensus protocol on complex networks plays a paramount role in network diffusion, synchronization,
and many distributed algorithms and has been extensively investigated Olfati-Saber and Murray [5], Ren et al. [6], Mesbahi
and Egerstedt [7], Gomez et al. [8], Chen and Zhang [9], Zhang et al. [10]. It is well-known that the convergence rate of
an autonomous consensus network can be quantified by the algebraic connectivity of a graph, i.e., the second smallest
eigenvalue of graph Laplacian Mesbahi and Egerstedt [7]. However, the efficiency of controlling a consensus dynamics over
a multiplex network can be characterized by the smallest eigenvalue of perturbed Laplacian matrix, where those nodes who
are directly controlled are referred to as leaders. In this paper, we shall explore the effect of deployment of leaders in a
multiplex consensus network on the convergence rate of consensus.

The organization of the paper is as follows. We first provide preliminaries and dynamical model in Section 2 and Section
3, respectively. The correlation between proportion of leaders and convergence rate of consensus is analyzed in Section 4.
The concluding remarks are provided in Section 5.

2. Preliminaries

Denote by R and N as the real and natural numbers, respectively. A graph is a triple G = (V, E, A) with the node set
V = {1, 2, . . . , n}, edge set E ⊂ V × V , and the adjacency matrix A = [aij] ∈ Rn×n satisfying aij = 1 if (i, j) ∈ E and aij = 0
otherwise. The neighbor set of node i isNi = {j ∈ V | (i, j) ∈ E}. A multi-agent system is composed of multiple agents whose
state at time t ∈ R≥0 is referred to as xi(t) for all i ∈ V . The degree matrix D ∈ Rn×n is such that D = diag {d1, d2, . . . , dn},
where di =

∑n
j=1 aij represents the degree of node i ∈ V . The Laplacian of the graph G is denoted by L = [lij] ∈ Rn×n whose

elements are determined by lij =
∑n

j=1 aij for i = j and lij = −aij for i ̸= j. A subgraph G′ is an induced subgraph if two nodes
of V(G′) are adjacent in G′ if and only if they are adjacent in G. An s ∈ N length path Ps in graph G is an induced subgraph
of graph G with node set V(P) =

{
vi1 , vi2 , . . . , vis

}
and edge set E(P) =

{
(vi1 , vi2 ), (vi2 , vi3 ), · · · , (vis−1 , vis )

}
. The graph G

is said to be connected if there exists at least one path between any two nodes in V(G). The direct sum of s ∈ N matrices
M1,M2, . . . ,Ms is denoted by

s⨁
k=1

Mk =

⎡⎢⎢⎣
M1 0 · · · 0
0 M2 · · · 0
...

...
. . .

...

0 0 · · · Ms

⎤⎥⎥⎦ .

3. Leader-following multiplex consensus networks

Consider a multiplex network G = (V, E, A) with m ∈ N layers and n ∈ N nodes in each layer. The ith node in
kth layer is referred to as i(k) for all i ∈ {1, 2, . . . , n} and k ∈ {1, 2, . . . ,m}. The intralayer topology is described by
graphs G(k)

=
(
V (k), E (k), A(k)

)
with adjacency matrix A(k)

= [a(k)ij ] ∈ Rn×n and Laplacian L(k)
= [l(k)ij ] ∈ Rn×n where

k ∈ {1, 2, . . . ,m}. The interlayer topology is characterized by graph G′ with adjacency matrix A′
= [a′

kl] ∈ Rm×m and
Laplacian L′

= [l′ij] ∈ Rm×m. Nodes i(k) and i(l) are connected if and only if a′

kl = 1 for all i ∈ {1, 2, . . . , n}, k, l ∈ {1, 2, . . . ,m}

and k ̸= l. We assume that networks G(k) are undirected, connected and without self-loop for all k ∈ {1, 2, . . . ,m}. For
instance, a two-layered multiplex network is shown in Fig. 1. There are 5 nodes in each layer where interaction structures
are characterized by G(1) and G(2), respectively.

Denote the state of ith node in kth layer as x(k)i ∈ R for all i ∈ {1, 2, . . . , n} and k ∈ {1, 2, . . . ,m}. Denote by
x(k) = [x(k)1 , x(k)2 , . . . , x(k)n ]

⊤
∈ Rn as the state of kth layer and by

x =

⎡⎢⎢⎢⎣
x(1)
x(2)
...

x(m)

⎤⎥⎥⎥⎦ ∈ Rmn
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