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h i g h l i g h t s

• It treats the XY Vector Blume–Emery–Griffiths model on a Kagome lattice.
• Tricritical points or BKT endpoints and isolated critical points are present on the phase diagram for a range of model parameters.
• We compare the phase diagram with previous works and we observed that the ratio of the temperature of BKT endpoints and the BKT

temperature of the pure system is a quantity independent of the lattice used.
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a b s t r a c t

We present a study of the XY vectorial generalization of the Blume–Emery–Griffiths
model on the Kagome lattice. Its thermodynamical properties are analyzed for different
values of the Hamiltonian parameters by employing extensive and up to date Monte Carlo
simulation methods consisting of hybrid algorithms. The results show a phase diagram
with Berezinskii–Kosterlitz–Thouless (BKT) transitions, BKT endpoints, and isolated critical
or tricritical points.We also compare the phase diagramwith previousworks on square and
triangular lattices and we note that they are qualitatively similar. In addition, we observed
that the ratio of the temperature of BKT endpoints to the corresponding BKT temperature
of the pure system is a quantity almost independent of the lattice topology.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The Blume–Emery–Griffiths Model [1] has been an object of intense investigations for almost five decades. It was the
first discrete spin system applied to superfluidity which was able to mimic some basic features of the bulk phase diagram of
3He-4Hemixtures. Since then, it has been used to describe various different physical systems such asmetamagnetic systems,
ternary alloys and fluids [2–5], among others.

Quite recently, Santos and Sá Barreto have studied the Spin-1 Blume–Capel model [6] and the Blume–Emery–Griffiths
(BEG) model [7] on the Kagome lattice for different values of the Hamiltonian parameters. They have found tricritical points
by employing the effective-field theory together with some rigorous bounds results. However, they were not able to study
the first-order transition lines and, consequently, could not distinguish between tricritical points and critical endpoints or
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isolated critical points. Thus, it is important to check the existence of tricritical points, as well as other multicritical points,
by using different and more powerful techniques in order to obtain the first-order transition lines.

The Kagome lattice [8] has the same coordination number of the square lattice, but different from the latter, each neighbor
has another neighbor in common. Thus, the Kagome lattice, despite having the same critical exponents as the square lattice,
presents different transition temperature and percolation concentration [9]. On the other hand, the Kagome lattice has been
widely used in spin ice and spin liquid studies (a possible new state ofmatter [10–12]) because of its geometric frustration in
antiferromagnetic models [13,14]. Understanding this lattice properties may therefore help to unravel new physical insights
on different physical problems.

Despite the relative success in representing the physical realization of the 3He-4He mixtures in three dimensions, the
BEG model presents a second-order phase transition in two-dimensional films, inconsistent with the experimental result
of a Berezinskii–Kosterlitz–Thouless like phase transition in 3He-4He. This disagreement is related to the fact that the BEG
model does not consider the rotational symmetry of the superfluid order parameter (or the wave function of superfluid
helium). Berker andNelson [15], and independently Cardy and Scalapino [16], proposed a planar rotatormodel to account for
the behavior of films of 3He-4Hemixtures, known as the vector Blume–Emery–Griffiths model (VBEG). More recently, an XY
version of theVBEGmodel (XY-VBEG) has been treated in three dimensionswhere the static [17] anddynamic properties [18]
have been studied through Monte Carlo and spin dynamics simulations. The XY-VBEG model is indeed a better system to
describe the 3He-4He mixtures because it has an intrinsic dynamics, which is absent in the planar rotator version in two
dimensions.

Thus, our purpose here is to study the phase diagram of the XY-VBEG model on the Kagome lattice for several values of
the Hamiltonian parameters where the spins are treated as three-dimensional classical vectors. We employ a hybrid Monte
Carlo algorithm in order to examine the behavior of the tricritical points and the BKT endpoints in the phase diagram. We
also compare our the results obtained on the Kagome lattice with previous results on the square lattice [19] and on the
triangular lattice [20].

The plan of the paper is the following. The model and the simulational methods are presented in the next section. In
Section 3, we present and discuss our results, while the main conclusions are discussed in the last section.

2. Model and simulational methods

The system under investigation is an XY vectorization of the Blume–Emery–Griffiths model on a Kagome lattice. The
Hamiltonian of this system can be written as
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= 1 or S2i = 0. In this case, S2i = 1 for magnetic particles (4He) and S2i = 0 for non-magnetic particles (3He). The first
sum is over nearest-neighbor pairs with coupling J > 0, which is the term that accounts for the superfluidity. The second
sum is over nearest-neighbor pairs as well, with biquadratic exchange K > 0. This term arises from a phenomenological
modeling of the interaction energy between pairs of helium particles of the same or different species. The last sum is over all
sites i of the lattice. The parameterD is a kind of crystal field, and is essentially the chemical potential difference that controls
the density of non-magnetic impurities. A more detailed explanation of the above model can also be found in Ref. [17].

We consider here J = 1 and K = 0, 0.8, 1, and 1.6, and several values of the reduced crystal field variable d = D/J . These
parameters correspond to the same values considered by Santos and Sá Barreto [7]. There are also different papers for K = 1
and K = 0 on a square lattice and on a triangular lattice for the XY version and the planar-rotator version [19–22].

The Kagome lattice was modeled using a square matrix where each element is a vector representing three sites, as
described in Ref. [23]. Using this modeling the total number of sites equals to 3L2, where L is the linear dimension of the
system.

In order to get the thermodynamic properties of the present model, we used a hybrid algorithm consisting of lattice-gas
moves, combined with the spin reorientation updates. The lattice-gas update attempts to insert a magnetic particle (with
a randomly selected spin orientation) at a site where a nonmagnetic one is located, or to replace the magnetic particle
present at a site by a nonmagnetic one. The Monte Carlo spin updates algorithm is composed of Metropolis algorithm [24],
a non-ergodic version of the Wolff algorithm [25,26] and overrelaxation updates [27,28]. The Wolff update affects only the
in-plane components of the spin-1 particles, with the z-component being unchanged, in order to obey detailed balance.
Analogously, the overrelaxation method is performed with a rotation solely of the in-plane component of the spins in order
to keep the configurational energy fixed. The lattice-gas moves and overrelaxation are done by randomly choosing the sites
of the lattice, while the Metropolis is done sequentially. The Wolff algorithm consists of flipping just one cluster. The Wolff
and the overrelaxation updates are both non-ergodic, but with the spin-reorientation updates and the lattice-gas moves
included, the combined algorithm will be ergodic. Each update method is performed once and each method is preceded by
a lattice-gas sweep. The sequence lattice-gas–Metropolis–lattice-gas–Wolff–lattice-gas overrelaxation constitutes then one
hybrid Monte Carlo step (MCS). More details can be found in Ref. [17].

For each temperature, d and K value, we have performed 5 × 105 MCS for relaxation and 5 × 105 MCS for average
calculation. The phase diagram was obtained using the same methods described in the Ref [19]. First, we compare
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