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h i g h l i g h t s

• Results include nonmonotonicity of relaxing observables, e.g. energy, when T is changed.
• The effect appears only under strong interactions and is directly observable in principle.
• Useful procedures developed: a half-Markoffian approximation and a relaxation memory/rate.
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a b s t r a c t

The approach to thermal equilibrium of each of three simple quantum systems in inter-
action with a reservoir is analyzed by calculating the time evolution of an observable
appropriate for each system. Two types of interaction with the reservoir are considered:
a single-phonon modulation of the interaction matrix element and a multiphonon in-
teraction arising from a polaronic transformation for a given single-phonon, but strong,
modulation of energy or frequency. The methodology employed is a recent formalism
based on a coarse-grained generalized master equation. Interesting results are obtained
for the multiphonon case including a nonmonotonic dependence of the time-dependent
observables in the multiphonon system as the temperature is varied. Such a result does
not appear in the single-phonon case, i.e., for weak coupling. In addition to contributing
towards the understanding of the detail in the approach to thermal equilibrium, the
analysis has practical applications to the vibrational relaxation of molecules embedded in
phonon baths and to the transport of charge in crystals subjected to electric fields strong
enough to lead to the formation of Stark ladders.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction and tools of this theoretical investigation

The purpose of this paper is to analyze the process of the approach to equilibrium of three simple but typical quantum
systems in interaction with a specified thermal reservoir and to describe interesting features that arise when the interaction
is strong. Approach to equilibrium is one of the subjects universally considered central in statistical mechanics [1–5] and
worthy of careful investigation. The three systems considered for analysis in the present paper are a nondegenerate quantum
dimer [6] which can exist in one of two energetically inequivalent states, differing in energy by 2∆; a charged particle under
the action of an applied strong electric field [7–10] E, moving across a 1-dimensional crystal of lattice constant, a; and a
harmonic oscillator of frequency Ω representing a molecule relaxing vibrationally [11,12] as a result of its interaction with
the reservoir [13]. The reservoir is a set of bosons, for instance phonons, of average frequency ω0 and dispersion σ . The
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dimensionless coupling constant g determines the strength of the interaction between system and reservoir and is taken to
lie between 0.02 and 2, depending on the coupling strength regime being studied, as described below.

The time-dependent observables calculated in order to study the approach to equilibrium are, in the first case, the
occupation probability difference p(t) = P1(t) − P2(t) of the dimer states which, from an initial value of 1 at the start,
settles into the Boltzmann ratio, − tanh (β∆), where (and henceforth) β = 1/kBT with kB the Boltzmann constant and T
the temperature; in the second case, the velocity v(t) of the electric charge q, as it speeds in the direction of the applied
field; and in the third case, the average energy of the relaxing molecule E(t) = h̄Ω (⟨M⟩ + 1/2), where ⟨M⟩ is the average
number of excitations in the oscillator. The parameters involved in all three cases are, in addition to the temperature T and
the coupling constant g , the following: the dispersion of the bath phonons, σ ≪ ω0, and the characteristic energy of each
system, 2∆ for the dimer, E = qEa for the moving charge, and h̄Ω for the harmonic oscillator.

The tools that we use for our theoretical investigation are based on generalized master equations (GMEs) derived by
extending the methodology of Zwanzig [14–16] to include coarse-graining [10,17,18]. We refer the reader to Refs. [6,10,19]
for the derivation of the form of these GMEs, but display them immediately below for use in our subsequent calculations in
the present paper.

As stated above, each of the three systems is characterized by a single energy. It is the difference 2∆ between the two
dimer state energies in the first system, and the difference between nearest neighboring states for the other systems, E for
the second and h̄Ω for the third. For all three systems, the reservoir contributes to the respective GME an energetically
‘‘downward’’ memory φ−(t) and an ‘‘upward’’ memory φ+(t), decided solely by the reservoir. The t = 0 to ∞ time integrals
of thesememories are in a detailed balance ratio to each other,

∫
∞

0 dsφ−(s)/
∫

∞

0 dsφ+(s) = eβh̄Ω , the characteristic frequency
of the specified system being represented by Ω .

For the dimer, the occupation probabilities P1(t) and P2(t) of the two states obey

dP1(t)
dt

= F21

∫ t

0
ds [φ+(t − s)P2(s) − φ−(t − s)P1(s)] , (1a)

dP2(t)
dt

= F21

∫ t

0
ds [φ−(t − s)P1(s) − φ+(t − s)P2(s)] , (1b)

where F21 is the relaxation rate corresponding to the energetically downward interstate transition. Here, 1 denotes the higher
energetic state, and F12/F21 = exp (−2∆/kBT ), satisfy the detailed balance condition. The dynamics of the charge under the
influence of a strong electric field are governed by the GME

dPM (t)
dt

= ~

∫ t

0
ds [φ−(t − s)PM+1(s) + φ+(t − s)PM−1(s)]

− ~

∫ t

0
ds [φ−(t − s) + φ+(t − s)] PM (s), (2)

where ~ is the charged particle relaxation rate, similarly the transition rate in the direction of the external field.1 For the
relaxing molecule represented by a harmonic oscillator, the occupation probability of the oscillator state M is governed by
the GME described by

dPM (t)
dt

= κ

∫ t

0
ds
{
φ−(t − s) [(M + 1)PM+1(s) − MPM (s)]

− φ+(t − s) [(M + 1)PM (s) − MPM−1(s)]
}
, (3)

where κ is the downward transition rate which we will call the oscillator relaxation rate. The level spectrum is discrete in
all cases, being finite (spanning only two states) in the first, infinite in the second (M ’s are integers from −∞ to ∞), and
semi-infinite (M ’s are positive integers extending from 0 to ∞) in the third system, respectively.

The GMEs in Eqs. (1)–(3), although slightly different in form as a result of the characteristics of each system, all have in
themmemories φ±(t) which are identical because we treat identical baths influencing the systems. The difference between
the GMEs arises in the termsmultiplying the φ(t)’s due to the respective system properties. Themultiplicative terms are the
corresponding relaxation rates, F21 for the dimer, ~ for the charged particle, and κ (as well as site-index dependent terms)
for the harmonic oscillator.

The present paper is organized as follows. In Section 2, brief comments are made about the form of the interaction
analyzed and bath correlation functions common for all three systems are calculated along with expressions for the
memories φ±(t). The discussion is presented in the detailed context of the third system, the relaxing molecule, and results
are used for all three cases without repeating the detail. In the next three sections, the relevant observable for each system
is analyzed and the results are discussed. Concluding remarks are presented in the last section.

1 In writing Eq. (2) we have corrected a minor sign error in Ref. [10].
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