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h i g h l i g h t s

• Superstable points correspond to a ground state phase (the none-magnetic phase).
• Superstable points are connected to zero magnetization plateau.
• The first maximum Lyapunov exponent plateau is rather similar to the second plateau of magnetization if there exists a superstable

point.
• The data suggests a non-trivial relation between ground states and stable fixed.
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a b s t r a c t

We consider the appearance of superstable cycles in the dynamical approach to the anti-
ferromagnetic and ferromagnetic spin-1 Ising and Ising–Heisenberg models on diamond
chains, and their connection with magnetization plateaus. The rational mappings, which
provide the statistical properties of the model, are derived by using recurrence relations
technique. We consider stability properties of the mapping, providing evidences of a
connection between magnetization plateaus and dynamical properties, as the behavior
of Lyapunov exponents. The newfound correspondence between superstable point and
zero magnetic plateau in spin-1 models on a diamond chain has been tested for a range
of parameters.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The theory of dynamical systems, besides its intrinsic theoretical relevance, recently had a significant impact on a wide
range of disciplines from physics to ecology and economics, providing methodological tools which are currently employed
in financial and economic forecasting, environmental modeling, medical diagnosis, industrial equipment diagnosis and so
on [1,2]. An important physical setting in which such dynamical techniques are profitably applied is equilibrium statistical
mechanics of lattice models, more specifically in the investigation of physical properties of low-dimensional classic and
quantum spin systems in an external magnetic field.

In this paper we apply dynamical techniques in the analysis of Ising and Ising–Heisenberg spin models on a diamond
chain, which are of current interest for a number of reasons. As a matter of fact, these models can be solved exactly by
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using different mathematical methods, and they exhibit a wide range of interesting properties such as the appearance of
intermediate plateaus in the magnetization curves, geometric spin frustration, multiple peak structure of the magnetic
susceptibility and specific heat [3–13].

The dynamical systems approach [14,15] has been used in many different physical situations, deepening our under-
standing of the phase structure and critical properties of spin and gauge models: it is particularly powerful in the analysis of
exact solution of spin models on hierarchical lattices, which in many cases accurately approximate real ones (the so called
Bethe–Peierls approximation). The specific dynamical method we will employ is the recursion relations method, where
the lattice is cut into branches, and the full partition function is expressed in terms of the reduced partition functions of
all branches. We remark that by using the term dynamical we do not imply the introduction of a temporal evolution on
the system yielding in the long time limit the canonical distribution, like in Metropolis or Glauber dynamics (stochastic
dynamics) [16], or Nosé–Hoover equations of motion (deterministic dynamics) [17]; as we show in the next section, the
dynamical systems we are introducing arise from recurrence relations for the partition functions of the systems we are
considering: in this sense the asymptotic features of the dynamical systems induced by recurrence relations are connected
to the thermodynamic limit of the physical lattice model. The use of dynamical systems concepts and methods, without
any physical time involved, is common to other methods in statistical mechanics, like renormalization group flows (see
e.g. [18]), thoughwe notice that our dynamical systems operate at fixed values of the coupling constants. From the recursion
relations of the partition function we are able to infer the thermodynamic limit of relevant thermodynamics quantities,
such as magnetization, magnetic susceptibility and specific heat. Besides yielding thermodynamic averages, the recurrence
relations have been employed to investigate other relevant quantities, like Yang Lee zeros of the partition function (see for
example [19], for the case of one-dimensional Potts model).

In order to physically motivate our analysis, we remark that spin-1 Ising and Ising–Heisenberg models on diamond
chains are a very good approximation for atoms of homometallic magnetic complex [Ni3(C4H2O4)2(µ3 − OH)2 (H2O)4]n ·

(2H2O)n [20,21], and the molecular compound [Ni8(µ3 − OH)4(OMe)2(O3PR1)2(O2CtBu)6 (HO2CtBu)8] [22]. Magnetic-
property measurements on such compounds indicate the coexistence of both antiferromagnetic and ferromagnetic inter-
actions between the magnetic centers, Ni ions with spin 1, which indeed suggests to investigate theoretically the magnetic
properties of such compounds. Another related interesting material is Cu3(CO3)2(OH)2 – known as natural azurite (Copper
Carbonate Hydroxide) – which can be well described by using the quantum antiferromagnetic Heisenberg model on a
generalized diamond chain [23–25]. A remarkable feature of these systems is their exact solvability through recurrence
relations techniques; within this method, as we already mentioned, statistical properties of a system are associated to one
or multidimensional rational mappings. In the antiferromagnetic case both models exhibit a complex behavior, featuring
superstable points and cycles, and magnetic plateaus.

The aim of this paper is to study the dynamical approach, and notably superstability in the abovementionedmodels [26–
30]. We propose a non-trivial connection of superstable points and Lyapunov exponents to magnetic plateaus.

The paper is organized as follows: in the next section we give a brief description of the spin-1 Ising and Ising–Heisenberg
models on diamond chains andwe describe how the dynamical approach allows a detailed analysis of physical properties. In
Section 3 we address stability features of the dynamical mappings we derived for such models, and their connections with
magnetization; in addition we compare our results with the experimental data in [20]. Finally, in Section 4, we present our
concluding remarks.

2. Models and their dynamic solutions

In this section we describe the quantum spin-1 Ising–Heisenberg model and the classical spin-1 Ising model, both on
diamond chain. Since the equations for bothmodels are rather similar wewill explicitly consider one case, providing further
details in the Appendix. The spin-1 Ising–Heisenberg model on a diamond chain (see Fig. 1) and its classic analogue (spin-1
Ising model on a diamond chain) are defined by the following Hamiltonians, written in terms of block contributions:
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