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h i g h l i g h t s

• Combine mass diffusion and heat conduction process for node ranking.
• Design a nonlinear hybrid mechanism for node state updating.
• The proposed PIRank method can capture different structural features.
• PIRank is immune to the localization transition of leading eigenvector.
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a b s t r a c t

One of the most interesting challenges in network science is to understand the relation
between network structure and dynamics on it, andmany topological properties, including
degree distribution, community strength and clustering coefficient, have been proposed
in the last decade. Prominent in this context is the centrality measures, which aim at
quantifying the relative importance of individual nodes in the overall topology with regard
to network organization and function. However, most of the previous centrality measures
have been proposed based on different concepts and each of them focuses on a specific
structural feature of networks. Thus, the straightforward and standard methods may lead
to some bias against node importance measure. In this paper, we introduce two physical
processes with potential complementarity between them. Then we propose to combine
them as an elegant integration with the classic eigenvector centrality framework to im-
prove the accuracy of node ranking. To test the produced power iteration ranking (PIRank)
algorithm, we apply it to the selection of attack targets in network optimal attack problem.
Extensive experimental results on synthetic networks and real-world networks suggest
that the proposed centrality performs better than other well-known measures. Moreover,
comparing with the eigenvector centrality, the PIRank algorithm can achieve about thirty
percent performance improvementwhile keeping similar running time. Our experiment on
randomnetworks also shows that PIRank algorithmcan avoid the localizationphenomenon
of eigenvector centrality, in particular for the networks with high-degree hubs.
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Fig. 1. Illustration of vital nodes with different structural features. (a) Local dominant node. (b) Intermediary nodes. (c) Network including vital nodes with
complex structural features. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

1. Introduction

Networked data have become ubiquitous, and networks describing physical systems, protein interactions, computer
communications, and people relationships are all becoming increasingly important in our day-to-day life. Complex network
analysis has proven to be a successful tool formodeling andmining enormous networked data. Because of the heterogeneous
of complex networks, some network nodes are more important to network function than others. Measuring the relative
importance of individual nodes is important in both theoretical research and practical application. For example, identifying
and protecting the crucial elements of the Internet so that the functioning of the system can be maintained, vaccinating
influential individuals in contact networks so that the spread of an epidemic can be suppressed, and identifying and removing
key vertices in amolecular network so that the bacteria can be eliminated. This context raises a fundamental question: given
the data, how should one construct the node centrality measure such that it can capture structural features effectively?

In the last decade, node ranking problem has been particularly proposed to measure the importance of nodes within a
given network [1], and a variety of centrality measures have been suggested based on different interpretations, including
neighbor-based local centralities (degree centrality, local centrality [2], and collective influence [3]), location-based global
centralities (closeness centrality [4], betweens centrality [5], and k-shell centrality [6,7]), and path counting centralities
(eigenvector centrality [8], Katz’s centrality [9], PageRank [10], andRA centrality [11,12]). Because of the variety of networked
systems, the vital nodes in every task are concretized from different perspective. For example, the vital nodes in influence
maximization problem are the influential sources that spread information [13], and the vital nodes in network disruption
problem are the intermediate nodes that maintain network integrity [14]. Specifically, influence maximization problem has
attracted attention recently [15–17], and many single node ranking methods [18–20] and multiple spreaders identification
methods [21–23] been proposed for the problem.Meanwhile, researchers begin to be concerned about node rankingmethod
for temporal networks [24]. Therefore, vital nodes may mean different things in various applications, and there is no
general consensus on the definition. This paper focus on the fundamental problem, i.e. vital nodes identification based on
network structure analysis, and explore the method to optimize the ranking accuracy. In face of such a problem, most of the
existing centrality measures focus on a specific structural feature and have limits in node ranking. For example, the degree
correlated local centralities (degree centrality, local centrality), global centralities (closeness centrality, betweens centrality)
and randomwalk based centralities (PageRank, LeaderRank [25]) are all towards to high degree nodes. However, researchers
have unveiled that lowdegree nodes always be very important andmeaningful inmany complex systems [26–28]. Therefore,
to identify vital nodes accurately, centralitymeasures should be optimized to capture network nodes’ structural information
as comprehensively as possible. To illustrate this idea, Fig. 1 gives an example of vital nodeswith different structural features.
In detail, the local dominant node with red color in Fig. 1(a) preserves connections with most of the network nodes, the
intermediary nodes with red color in Fig. 1(b) maintain the network’s integrality and havemore control on communications
between network components, and in Fig. 1(c) the nodes with blue color have features of local dominant node and the nodes
with red color have features of local dominant node and intermediary node simultaneously. It is easy to see that the nodes
with colors play critical role in network structure and accurate node ranking should consider all the strucutral features.

As representative of the class of spectral centralities, eigenvector centrality measures the importance of a node based on
the influence of its neighbors. High-influence neighbors contributemore to central node’s influence than low-influence ones,
and a node is influential if it hasmany influential neighbors. Eigenvector centrality calculates based only on local information
in each step but can utilize global network information through successive iteration. It assigns a relative importance score
vi for node i that is proportional to the sum of the scores of the neighbors of node i. Mathematically, this can be written
as vi = λ−1

∑
jAijvj, where λ is a constant of proportionality and Aij is an element of the adjacency matrix A of a network

having value one if there is an edge between node i and j and zero otherwise. In the matrix form, we have Av = λv, which
means that the vector v of centralities vi is an eigenvector of the adjacencymatrix A. Because centralities are all nonnegative,
the Perron–Frobenius theorem [29] guarantees that the vector v of centralities vi must be the leading eigenvector of non-
negative real square matrix A. Meanwhile, physical diffusion process mass diffusion (MD) and heat conduction (HC) have
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