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• The system has a unique global positive solution with any positive initial value.
• Random effect may lead to disease extinction under a simple condition.
• Sufficient condition for persistence has been established in the mean of the disease.
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a b s t r a c t

In this paper, the threshold behavior of a susceptible–infected–recovered (SIR) epidemic
model with stochastic perturbation is investigated. Firstly, it is obtained that the system
has a unique global positive solution with any positive initial value. Random effect may
lead to disease extinction under a simple condition. Subsequently, sufficient condition
for persistence has been established in the mean of the disease. Finally, some numerical
simulations are carried out to confirm the analytical results.
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1. Introduction

The SIR epidemic model is one of the most important models in epidemiology and disease control. Kermack and
McKendrick [1] initially proposed and investigated the classical SIR model. From then on, a lot of epidemic models are
formulated as dynamical systems of ordinary differential equations [2–8]. The deterministic SIR model can be expressed
by the following ordinary differential equations:⎧⎨⎩

Ṡ(t) = Λ − µS(t) − βS(t)I(t) − δS(t)
İ(t) = βS(t)I(t) − (µ + γ + ε)I(t)
Ṙ(t) = γ I(t) − µR(t) + δS(t)

(1)

subject to S(t) + I(t) + R(t) = N along with the initial values S(0) = S0 > 0 and I(0) = I0 > 0, where S(t), I(t)
and R(t) are the population fractions of susceptible, infective and removed at time t , respectively. Λ denotes a constant
input members into the population, µ represents the natural death rate, β is the contact rate, ε denotes the death rate
due to disease, γ denotes the recovery rate of the infective individuals. It can make the susceptible has the immunity of
the epidemic if injected susceptible with the vaccine. The number of people for immunity is positive proportional to the
infection with ratio δ at time t , δS(t) represents the members who have been removed from susceptible to removed. In the
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system, the basic reputation number is R0 =
βΛ

(µ+γ+ε)(µ+δ) . It always has a disease-free equilibrium E0 = ( Λ
µ+δ

, 0, δΛ
µ(µ+δ) ).

When R0 ≤ 1, the disease-free equilibrium E0 is global asymptotically stable, and therefore, the disease will die out
after some period of time. When R0 > 1, E0 is unstable and there is an endemic equilibrium E∗ = (S∗, I∗, R∗), where
S∗

=
Λ

(µ+δ)R0
, I∗ =

µ+δ

β
(R0 − 1), R∗

=
γ (µ+δ)

µβ
(R0 − 1) +

δΛ
µ(µ+δ)R0

, which is a global attractor, and so means the disease

will prevail and persist. These conclusion of system (1) without vaccine can be found from [9].
In many previous epidemic models, the bilinear incidence rate βSI is frequently used [10–13]. To make system more

interesting and realistic, it is reasonable to adopt the saturated incidence rather than bilinear incidence [14,15]. In this paper,
the saturated incidence rate βS(t)I(t)

1+αI(t) is adopted, so the model with saturated incidence takes the following form:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ṡ(t) = Λ − µS(t) −

βS(t)I(t)
1 + αI(t)

− δS(t)

İ(t) =
βS(t)I(t)
1 + αI(t)

− (µ + γ + ε)I(t)

Ṙ(t) = γ I(t) − µR(t) + δS(t).

(2)

As amatter of fact, there are real benefits to be gained in using stochasticmodels because real life is full of randomness and
stochasticity. As an extension of system (1), the random perturbation in model (2) is introduced by replacing the parameter
β by β +σ Ḃ(t), where Ḃ(t) is the white noise, namely, B(t) is a standard Brownian motion and σ denotes the intensity of the
white noise. The model takes the following form:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ṡ(t) = Λ − µS(t) −
βS(t)I(t)
1 + αI(t)

− δS(t) −
σS(t)I(t)
1 + αI(t)

dB(t)

İ(t) =
βS(t)I(t)
1 + αI(t)

− (µ + γ + ε)I(t) +
σS(t)I(t)
1 + αI(t)

dB(t)

Ṙ(t) = γ I(t) − µR(t) + δS(t).

(3)

Since the dynamic of R has no influence on the transmission dynamics, the third equation of system (3) can be omitted.
The following system is investigated:⎧⎪⎪⎨⎪⎪⎩

Ṡ(t) = Λ − µS(t) −
βS(t)I(t)
1 + αI(t)

− δS(t) −
σS(t)I(t)
1 + αI(t)

dB(t)

İ(t) =
βS(t)I(t)
1 + αI(t)

− (µ + γ + ε)I(t) +
σS(t)I(t)
1 + αI(t)

dB(t).
(4)

The main aim of this paper is to investigate the dynamics of system (4).
The organization of this paper is as follows. In Section 2, the global existence and positivity of the solution to system (4)

are investigated. In Section 3, it is shown that random effect may lead the disease to extinction under a simple condition. A
sufficient condition for persistence in the mean of the disease is given in Section 4. Section 5 is devoted to introducing some
numerical simulations to illustrate theoretical results. Finally, some conclusions are given.

2. Existence and uniqueness of the positive solution

Throughout this paper, let (Ω, {Ft}t≥0, P) be a complete probability space with a filtration {Ft}t≥0 satisfying the usual
conditions (i.e. it is right continuous and F0 contains all P-null sets), and let B(t) be a scalar Brownian motion defined on the
probability space. As we have known, for any given initial value, the coefficients of a stochastic differential equation should
satisfy the linear growth condition and the local Lipschitz condition to guarantee a unique global solution. It is easy to check
that the coefficients of model (4) satisfy the local Lipschitz condition, while they do not satisfy the linear growth condition.
Therefore, the solution of model (4) might explode within finite time. According to the analytical methods demonstrated
in recent contributions [16–20], the existence and uniqueness of a global positive solution is obtained in the following
Theorem 1.

Theorem 1. For any initial value (S(0), I(0)) ∈ R2
+
, model (4) admits a unique global positive solution (S(t), I(t)) for all t ≥ 0,

and the solution remains in R2
+
with probability one, namely

P{(S(t), I(t)) ∈ R2
+
, forallt ≥ 0} = 1.

Proof. Since the coefficients of system (4) are locally Lipschitz continuous, the model admits a unique local solution on
t ∈ [0, τe) for any given initial value (S(0), I(0)) ∈ R2

+
, where τe is the explosion time [16–20]. To show this assertion, it need

to show that τe = ∞ a.s. Suppose that τk < +∞, let k0 > 0 be sufficiently large such that either component of (S(t), I(t))
lies within the interval [ 1

k0
, k0]. For each integer k ≥ k0, the stopping time can be defined that

τk = inf{t ∈ [0, τe) : min{S(0), I(0)} ≤
1
k
, or max{S(0), I(0)} ≥ k}.
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