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h i g h l i g h t s

• Derivation of an advection–diffusion Lattice Boltzmann model without the so-called compressibility errors coming from the flow field.
• Derivation of a local expression for a correction to the Fickian diffusion term.
• Use of the lattice Gas kinetic formulation to make the scheme adapted to cases with variable diffusion coefficients.
• Application of the model to 2-D and 3-D cases with detailed chemistry and variable diffusion coefficients.
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a b s t r a c t

Given the complex geometries usually found in practical applications, the Lattice
Boltzmann (LB) method is becoming increasingly attractive. In addition to the simple
treatment of intricate geometrical configurations, LB solvers can be implemented on very
large parallel clusters with excellent scalability. However, reacting flows and especially
combustion lead to additional challenges and have seldom been studied by LB meth-
ods. Indeed, overall mass conservation is a pressing issue in modeling multi-component
flows. The classical advection–diffusion LB model recovers the species transport equations
with the generalized Fick approximation under the assumption of an incompressible
flow. However, for flows involving multiple species with different diffusion coefficients
and density fluctuations – as is the case with weakly compressible solvers like Lattice
Boltzmann –, this approximation is known not to conserve overall mass. In classical CFD, as
the Fick approximation does not satisfy the overallmass conservation constraint a diffusion
correction velocity is usually introduced. In the present work, a local expression is first
derived for this correction velocity in a LB framework. In a second step, the error due to
the incompressibility assumption is also accounted for through a modified equilibrium
distribution function. Theoretical analyses and simulations show that the proposed scheme
performsmuch better than the conventional advection–diffusion Lattice Boltzmannmodel
in terms of overall mass conservation.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Many fields of science and engineering involve the transport of multiple reacting species. For such flows, a correct
mathematical model describing the interactions between different species is of the utmost importance. A variety of models
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have been developed to describe such interactions, which can usually be placed in one of the following two categories:
(a) single-fluid, or (b) multi-fluid. Although initially developed to solve the Navier–Stokes (NS) equation, Lattice Boltzmann
approaches have been extended to a variety of applications and flows [1–3]. This class of solvers can be again classified
as either single-fluid or multi-fluid. A variety of so-called multi-fluid models have been developed over the years. Two
general classes of multi-component LB models can be distinguished: (1) Models derived from kinetic equations for binary
mixtures [4], and (2) models based on pseudo-potentials [5]. The first category mostly relies on kinetic models proposed by
Sirovich [6] or by Hamel [7–9] for binary mixtures. Although it has been shown through Chapman–Enskog (CE) expansions
that such approaches can recover the full Maxwell–Stefan system of equations, they have usually been limited to binary
fluids. Recently, a new kinetic model for multi-component flows has been proposed [10,11]. This model can be applied to
any number of species and is shown to recover the Maxwell–Stefan equation. Even though the mathematical formulation
allows formultiple species, thismodel is still not verywell adapted to simulations involving a large number of species. This is
in part due to the fact that each species distribution function, just like any classical NS solver, has to conserveD+1moments,
D being the dimension. This in turn means a large set of velocities per species per node that must be stored in memory.

In the single-fluid formulation, memory consumption is much lower, and comparable to classical finite-difference
methods, as the solver for the species only needs to conserve the zeroth-order moment. In this type of approach, also known
as passive scalar, the usual Navier–Stokes equations are used to model the mixture flow field while additional ‘‘advection–
diffusion–reaction’’ equations are incorporated to simulate species transport. The scalars – species mass fractions or
concentrations in this case – are advected by the flow field and interact with each other through diffusion (non-reactive
collision), or chemical reaction. In classical macroscopic models, diffusion usually appears in the transport equation in the
form of an additional advection velocity. The diffusion velocity can be computed through the use of the Maxwell–Stefan
multicomponent diffusion equations [12]. In cases involving large numbers of species, such as combustion modeling with
detailed chemistry, solving the corresponding system of Maxwell–Stefan equations can become very time-consuming. In
order to minimize computation time, approximated diffusion velocities are commonly used. Two of the most widely used
approximations are [13]: (a) the Fick approximation – as recovered by the classical advection–diffusion lattice Boltzmann
model –, and (2) the Hirschfelder and Curtiss model. Although very practical and computationally efficient, both of these
approximations lack a fundamental property at the continuum level: total mass conservation [12,14,15]. As such, they can
only effectively be applied to flows where all species have the same Lewis number, i.e., the same diffusion coefficients. For
applications such as combustion, the previous assumption does not hold in general, small species like atomic hydrogen
diffusing much more rapidly than large molecules. In order to conserve mass everywhere and especially in high-gradient
areas, such as the flame front, a correction velocity must be introduced [16].

Modeling multi-species reacting flows, especially combustion applications, is an issue of growing importance [17–22].
Most combustion-oriented LB simulations use the passive-scalar approach to model the species. As mentioned earlier the
advection–diffusion (AD)modelwith the Fick approximation does not generally conservemass at the continuum level. Apart
from the overall mass gain/loss introduced by the Fick approximation, it can be shown that, even for unity Lewis numbers,
this approach holds only under the incompressibility assumption, by analyzing the macroscopic equation recovered by
the AD-LB model. Even for incompressible cases, given that the LB flow solver is weakly compressible, thus allowing for
fluctuations in density, the advection–diffusion model must be modified to account for density changes. In view of the
growing interest for simulating multi-species reacting flows with the LB approach, developing a correct diffusion model
appears to be very important. In the present work, in order to eliminate the continuum-level error coming from the Fick
approximation in the diffusion term, an appropriate correction velocity will be derived in the context of the AD-LB model.
In order to maintain the locality of the time-evolution operators involved in LB, this so-called correction velocity will be
derived using only data from local populations. Furthermore, the error coming from the incompressibility assumption will
be corrected by introducing a modified equilibrium distribution function. Finally, to keep the model second-order accurate
regardless of the scaling, the error associated with the Fick approximation will be decoupled from numerical dissipation
through the lattice gas kinetic scheme approach.

The proposed model is validated by considering three different test-cases of growing complexity. The first test-case is
a Gaussian hill subject to a uniform velocity field involving two species with different diffusion coefficients. This test-case
shows that the correction velocity introduced in our model effectively removes the non-conservation of mass introduced by
the Fick approximation, as the flow field is here strictly incompressible, ∇⃗ · u⃗ = 0. Second, the effect of the proposed model
on the incompressibility error is evaluated by computing a diluted premixed propane/air counter-flow flame. It is shown
that the scheme derived in the present work effectively deals with both sources of non-conservation. Finally, a last test-case
involving an Ozone/air non-premixed flow with detailed thermo-chemical models is computed in a 3-D configuration to
demonstrate the versatility of the developed model.

2. Physical context and conservation at the continuum level

Aspreviouslymentioned, the single-fluid approach tomodel amulti-species flow consists of threemain components [12]:
(a) Navier–Stokes equations for the mixture, (b) Heat transport equation for the mixture and (c) a set of transport equations
for the species. The NS equations can be represented as:

∂t (ρu⃗) + ∇⃗ · (ρu⃗ ⊗ u⃗) = −(∇⃗p) ·
¯̄I + ∇⃗ ·

[
µ(∇⃗u⃗ + ∇⃗u⃗T )

]
, (1)
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