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a b s t r a c t

The past analyses of datasets of social networks have enabled us tomake empirical findings
of a number of aspects of human society, which are commonly featured as stylized facts of
social networks, such as broad distributions of network quantities, existence of commu-
nities, assortative mixing, and intensity-topology correlations. Since the understanding of
the structure of these complex social networks is far from complete, for deeper insight
into human society more comprehensive datasets and modeling of the stylized facts are
needed. Although the existing dynamical and static models can generate some stylized
facts, here we take an alternative approach by devising a community-based static model
with heterogeneous community sizes and larger communities having smaller link density
and weight. With these few assumptions we are able to generate realistic social networks
that showmost stylized facts for a wide range of parameters, as demonstrated numerically
and analytically. Since our community-based static model is simple to implement and
easily scalable, it can be used as a reference system, benchmark, or testbed for further
applications.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Characterizing the social networks is of crucial importance to understand various collective dynamics taking place in
them [1–3], as exemplified by disease spreading and diffusion of innovation and opinions. In recent years, the characteriza-
tion of social networks in the unprecedented detail has become possible because of the availability of a number of large-scale
digital datasets, e.g., face-to-face interactions [4–6], emails [7,8], mobile phone communication [9,10], online forums [11,12],
Social Networking Services (SNSs) like Facebook [13] and Twitter [14], and even massive multiplayer online games [15,16].
However, these datasets capture only a part of the entire social network, implying that any conclusions derived from such
datasets cannot be simply extrapolated to the whole society. Here the entire social network indicates a comprehensive
picture of human social relationships with complex community structure due to today’s multiple communication channels,
and can be called a multi-channel weighted social (MWS) network. This raises a series of questions: How can one translate
conclusions from partial datasets to the MWS network? More importantly, what does the MWS network look like? The first
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question has been investigated in terms of sampling biases [17–20], while the second question is largely unexplored mainly
due to the lack of comprehensive datasets.

Characteristics of the MWS network are expected to be partially reflected in the empirical findings from some aspects of
the network. By collecting such findings fromdiverse sources, we find several commonly observed features or stylized facts of
social networks [21–23]. These include broad distributions of local network quantities [1,24], community structure [25], ho-
mophily [26,27], and intensity-topology correlations [9], etc.More recently, geographical and/or demographic information of
social networks have also been explored [28–30], which are beyond the scope of this paper. One can find the previous efforts
of modeling social networks: The global picture for social networks has been described by the Granovetter’s hypothesis of
‘‘strength of weak ties’’ [31], indicating that communities of strongly connected nodes are weakly connected to each other.
This picture has been empirically confirmed [9,32] and subsequently producedwith computationalmodeling by considering
cyclic and focal closure mechanisms in tie formation [22,33,34]. However, it was recently suggested that communities could
be overlapping [35,36] in contrast to the picture of separate communities. This overlapping behavior is mostly due to the
multilayer nature of social networks [37,38], in which each layer may correspond to a certain type of human relationship or
context. This means that an individual can belong to one community in one layer but simultaneously to another community
in another layer. Accordingly, dynamical models for multilayer, overlapping community structure have been introduced,
while reproducing other stylized facts for local network quantities [39]. There are also several other dynamical models that
partially reproduce stylized facts [40–42].

As many models mentioned above are dynamic and evolutionary in nature, they tend to take considerable amount of
computational time. For relatively simpler and easier implementation, we take an alternative approach of static modeling to
reproduce the stylized facts in social networks. For ourmodel, we randomly assign a number of communities to a given set of
isolated nodes using a few reasonable assumptions such that the community size is heterogeneous, and larger communities
are assigned with smaller link density and smaller link weight. As we assign communities by hand rather than grow the
network by means of some link formation mechanisms, our model can be called static. We also remark that the community
size distribution is an input rather than an output of ourmodel, although it is one of stylized facts.With the abovementioned
few assumptions about communities, apparently realistic social network structures are generated showing most stylized
facts for a wide range of the parameter space. Furthermore, thanks to the random nature of assigning communities to nodes,
we can to some extent analytically calculate various local network quantities, e.g., for the assortativemixing, local clustering
coefficient, and neighborhood overlap.

This static modeling approach of ours is comparable to other static modeling studies, which can be classified, but
not exclusively, into four categories: (i) Erdős–Rényi (ER) random graphs, (ii) configuration models (CMs), (iii) stochastic
blockmodels (SBMs), and (iv) exponential random graph models (ERGMs). The ER random graphs [43] are the simplest kind
of static models, and its variants have been studied, such as graphons [44,45], weighted random graphs [46], or ER random
graphs with community structure [47]. In the simplest form of CMs a binary network is constructed only by using the pre-
determined degree sequence of nodes, without any other correlations [48]. It has been extended for containing the arbitrary
distributions of subgraphs [49], to weighted networks [50,51], or to networks with overlapping community structure [52]
or with hierarchical community structure [53]. Next, the SBM was originally suggested for the community structure,
characterized by a matrix consisting of the linking probabilities within communities and between communities [54–56].
As the traditional SBMs are not comparable with the empirical degree heterogeneity, the degree-corrected SBMs, by which
the degree heterogeneity can be properly considered, have been studied [57,58]. The SBMs have also been extended to
incorporate the overlapping communities by considering the mixed membership [59,60] or to the weighted networks, for
which see Ref. [61] and references therein. Finally, the family of ERGMshas been extensively studied in social sciences [44,62]
as well as in terms of statistical mechanics [63]. Here an ensemble of networks with given network features is considered
according to the probability in the form of Boltzmann factor. The ERGMs have been extended for weighted networks [64] or
for networks with community structure [58].

In our work, we will be exploring a different static modeling approach by explicitly considering the communities with
various sizes, linking probabilities, and link weights. This way we arrive at a simple and scalable static model, which may
serve as a reference system, benchmark, or testbed for further applications.

Our paper is organized as follows: In Section 2, we summarize the observed stylized facts for social networks fromdiverse
sources. Thenwe introduce the community-based staticmodel in Section 3. In Section 4, by performing large-scale numerical
simulations, we find a wide range of the parameter space in which the stylized facts are reproduced. In Section 5, we present
the analytical results for local network quantities. Finally, we conclude our work in Section 6.

2. Stylized facts

In Table 1 we present a summary of the commonly observed features or stylized facts in many digital datasets for social
networks. These include the statistics of local network quantities and results for the global structure, both of which can be
either topological or intensity-related.

Let us first consider topological quantities. The degree k of a node is the number of its neighbors. Degree distributions P(k)
in most datasets are found to be broad and overall decreasing [1,12,13,24,65]. This implies that the most probable degree or
the mode of P(k), denoted bymk, is of the order of 1, leading to the fact thatmk is much smaller than the average degree ⟨k⟩.
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