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HIGHLIGHTS

o The steady state of a spatial game features a series of dynamic regimes.
e Transitions between regimes do not fit into the standard paradigm of phase transitions.
e Interfaces are random fractals which are space filling in the thermodynamic limit.
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1. Introduction

The surge of interest in game theory can be traced to the seminal works of John Nash in the middle of the 20th century.
The main subject of classical game theory is finding the optimal strategy in games between two or more individuals (players
or agents), where each individual has several possible behaviors. A repeated game is a situation where the same agents play
the game with the same rules multiple times. Rational behavior of an agent then evolves with time based on the memory of
past encounters. An agent’s strategy thus evolves, the so-called evolution of cooperation [1,2].

A prototypical model in game theory is the so-called Prisoner’s Dilemma, played by two agents in discrete time steps. In
each round of the game, each agent uses one of two possible strategies, cooperate C or defect D, and receives a payoff that
depends on the strategies of the agent and its opponent [3].

Evolutionary game theory (see, e.g., [4-7] and the references therein) investigates the behavior of large populations,
where a macroscopic number of agents use a finite number of strategies. While classical game theory deals with individual
agents, evolutionary game theory focuses on the winning strategies themselves rather than individuals. Spatial evolutionary
games are played with agents arranged in some spatial structures and interacting with other agents in their immediate
neighborhoods. Various geometries have been explored, including regular grids [8,9], random graphs and small world
networks [10], and evolving random graphs [11,12].
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The spatial arrangement of agents yields emergent geometric structures—groups of agents who synchronize their
behaviors with their neighbors and compete with other groups. The temporal evolution of these geometric structures can
be highly nontrivial.

In this paper, we study a simple version of an evolutionary game based on the Prisoner’s Dilemma [8,9]. The game
is deterministic, and the time evolution is governed by a single parameter, the payoff ratio. Although the local rules are
apparently simple, the steady state of the game features a series of very different dynamic regimes separated by sharp
transitions. We characterize the geometric properties of the emergent structures across transitions.

We obtained several results that might be surprising for the statistical physics community. We found that transitions
between steady states of the structures do not fit into a traditional classification of critical phenomena. The transitions
are sharp but are not similar to first-order thermodynamic transitions [13]. Clusters of agents with similar strategies do
percolate from boundary to boundary of the finite systems investigated. Cluster mass is finite at both sides of the transition,
and it is similar to the first order phase transition. It is known that cluster interface scales as the cluster surface in these case,
and it is not fractal. In our case cluster boundaries look irregular and demonstrate fractal behavior, which is similar to the
percolation clusters in thermodynamic equilibrium [14,15]. We measure dimension of the cluster interface and find that it
equals 2 asymptotically with the lattice size.

2. Rules of the game

Following Refs. [8,9], we define the game rules as follows: L? agents are arranged on an L x L rectangular grid in two
dimensions. The game is globally synchronous and is played in discrete time steps. At each time step, an agent interacts with
its eight neighbors (the chess king’s moves) and itself. The total score of an agent in a round is the sum of the payoffs of all
nine games played in the current round. When all pairwise games are played and all payoffs are known, agents change their
strategies for the next round. Various adaptation behaviors are possible. We use the simplest case of maximally opportunistic
agents with a short memory: at each time step, an agent adopts the strategy with the maximum payoff among itself and its
opponents in the preceding round. For two agents, this strategy is trivial. [t becomes more interesting when the maximally
opportunistic adaptation is used in a spatial evolutionary context.

The payoff an agent receives in an elementary game depends on the strategies of the agent and its opponent. We use
the following payoff structure [8,9]: (i) If both agents defect, they receive nothing. (ii) If both agents cooperate, each of them
receives a payoff of S, which we set to S = 1 without loss of generality. (iii) In the interaction of ¢ and D, the defector receives
apayoff T > S and the cooperator receives zero. The payoff structure hence depends on only one parameter, the payoff ratio
b=T/s.

The spatial game can obviously be described as a cellular automaton with a particular set of transition rules, but the
description in terms of cellular automata turns out to be very complex: the state of an agent in the next round depends on
the payoffs of its neighbors, which in turn depend on their neighbors. Because 25 agents are relevant, the transition table
size is 2%°, in contrast to the transition matrix for Conway’s Game of Life, which has 2° = 512 rules.

3. Results and discussion
3.1. Quantitative analysis

The game is deterministic, and the full time evolution is completely defined by the initial conditions (the spatial
distribution of strategies C and D at t = 0) and the value of the payoff parameter b. The discrete structure of the payoffs
leads to a series of very different dynamic regimes separated by sharp transitions at special values of b. Moreover, for fixed
initial conditions, the dynamics is exactly identical for all values of b between these transition points. Statistical fluctuations
enter via our use of random, unstructured initial conditions: physical observables are calculated as averages over both
time evolution in the steady state (which is deterministic given initial conditions) and the ensemble average over a set
of realizations of initial conditions (where the steady states are equivalent in the statistical sense).

It is instructive to consider the time evolution of small local objects, i.e., clusters of one strategy embedded into a sea of
the other strategy. For b < 1, defectors always lose. For b > 3, cooperators unconditionally win. For 1 < b < 9/5, a zoo
of various small objects (gliders, rotators, etc.) are possible. Small clusters of D remain small and large clusters of D shrink.
Conversely, for b > 9/5,a 2 x 2 or larger cluster of D grows. The situation is reversed for defectors: a 2 x 2 cluster of C
grows for b < 2, while a large cluster of C shrinks for b > 2.

Therefore, 9/5 < b < 2 is the fierce competition regime where clusters of C can grow in regions of D and vice versa.
Starting from a single defector in a center of a large game field, the steady state is a dynamic fractal with a well-defined
average density of D, the “evolutionary kaleidoscope” in Ref. [9].

1 The presence of self-interaction can be motivated by considering an agent to represent a group of individuals. Self-interaction then encapsulates some
internal dynamics of this group. The qualitative features of the model are independent of the inclusion of self-interaction.
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