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h i g h l i g h t s

• The evolution of the squeezing-enhanced vacuum state (SEVS) in the amplitude dissipative channel is given.
• We discuss the sub-Poissonian behavior for the output state.
• The effect of the dissipation factor on the SEVS are reported.
• Exact numerical solutions for the nonclassical feature of the output state for the SEVS are investigated.
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a b s t r a c t

We study the evolution of the squeezing-enhanced vacuum state (SEVS) in the amplitude
dissipative channel by using the two-mode entangled state in the Fock space and Kraus
operator. The explicit formulation of the output state is also given. It is found that the
output state does not exhibit sub-Poissonian behavior for the nonnegative value of the
Mandel’s Q-parameters in a wide range of values of squeezing parameter and dissipation
factor. It is interesting to see that second-order correlation function is independent of
the dissipation factor. However, the photon-number distribution of the output quantum
state shows remarkable oscillations with respect to the dissipation factor. The shape of
Wigner function and the degree of squeezing show that the initial SEVS is dissipated by the
amplitude dissipative channel.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Squeezed states have become a primary topic of the nonclassical state in quantum optics and quantum information [1–3].
It was Kennard who presented the first squeezed states in 1927 [4]. Recently, many theoretical and experimental studies
were devoted to the generation of the squeezed states, such as the resonance fluorescence [5], the harmonic generation [6]
and parametric amplification [7], etc. Stoler proved that the minimum uncertainty states can be obtained by operating the
squeezing operator S (ζ ) on the vacuum state |0⟩, and S (ζ ) was defined as

S (ζ ) = exp
(

ζ

2
a†2

−
ξ ∗

2
a2
)

, (1)

where ζ is a complex squeezing parameter and a
(
a†
)
is the annihilation (creation) operator, satisfying the commutation

relation
[
a, a†

]
= 1 [8]. The degenerate parametric amplifier has been used to generate such squeezed states [9].

* Corresponding author.
E-mail address: renfeiyu@mail.ustc.edu.cn (G. Ren).

https://doi.org/10.1016/j.physa.2018.01.027
0378-4371/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.physa.2018.01.027
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2018.01.027&domain=pdf
mailto:renfeiyu@mail.ustc.edu.cn
https://doi.org/10.1016/j.physa.2018.01.027


2 G. Ren et al. / Physica A 498 (2018) 1–9

Due to the widespread applications of squeezed light in high-precision interferometry and optical communication, the
study of squeezed states with strong squeezing becomes very popular. Mandel and Wolf have shown a more general
squeezing operator, which is generated by

exp
[
i
(
ka†2

+ fa
†
a + k∗a2

)]
, (2)

where f and k are two parameters [10]. Its squeezing-enhanced properties were studied in the special case

V (λ, r) ≡ exp
[
−

i
2
λ
(
erQ 2

− e−rP2)] , (3)

where Q =
(
a + a†

)
/
√
2, P =

(
a − a†

)
/
√
2i, λ and r are two real parameters. When r = 0, V (λ, r) in Eq. (3) reduces

to a normal squeezing operator in Eq. (1). V (λ, r) exhibits squeezing enhancement when the two parameters satisfy the
inequality tanh λ < 1/(1 + cosh r) . It may be experimentally implemented by a nonlinear parametric amplifier process
and a self-interaction via the Kerr effect [11]. Acting the operator V (λ, r) on the vacuum state, one can get the squeezing-
enhanced vacuum state (SEVS).

On the other hand, since quantum state is not absolutely isolated, quantumdissipation in a thermal environment has been
an issue of widespread interest in many fields of quantum physics. When a pure state propagates in a dissipation channel, it
inevitably interacts with the medium and turns into a mixed state [12]. Agarwal revealed that a vortex state of a two-mode
system can be generated from a squeezed vacuum by passing through a quantum channel with amplitude damping [13].
In quantum information processing, the time evolution of the density operators are the key to the study of the decoherent
properties of quantum states.

Thus an interesting and challenging question naturally arises: What kind of mixed state does the initial SEVS turns into
when passing through the amplitude dissipative channel? How squeezing effects and photon statistics distributions varies
in this evolution? To answer these questions, the passage is arranged as follows. In Section 2, we derive the evolution of the
SEVS in the amplitude dissipative channel in term of the Kraus operators and the explicit formulation of the output state
ρt is given by using the two-mode entangled state in the Fock space. In Section 3, the statistical properties of ρt , such as
Mandel’s Q-parameter, second-order correlation function, photon-number distribution and Wigner function are discussed
in detail. The degree of squeezing for ρt is studied in Section 4. We summarize our main results in Section 5.

2. Evolution of the SEVS in the amplitude dissipative channel

The master equation for describing the amplitude decay mode is
dρ
dt

= k
(
2aρa†

− a†aρ − ρa†a
)
, (4)

where k is the real rate of decay.
In order to derive the infinite operator-sum representation of ρ from Eq. (4), we construct the two-mode entangled state

in the Fock space as

|η⟩ = exp
(

−
1
2
|η|

2
+ ηa†

− η∗ã†
+ a†̃a†

)
|00⟩ , (5)

where a† mode is the system-mode and ã† is a fictitious mode denoting the effect of environment, a† is independent of
ã†,
[
a†, ã†

]
= 0. |η⟩ is the eigenstate of two commutative operators

(
a − ã†

)
and

(
a†

− ã
)
,(

a − ã†)
|η⟩ = η |η⟩ ,

(
a†

− ã
)
|η⟩ = η∗

|η⟩ . (6)

From Eq. (6), we can see the operators
(
a − ã†

)
and

(
a†

− ã
)
can be replaced by the complex number η and η∗.

When η = 0, the entangled state in Eq. (5) becomes

|I⟩ ≡ |η = 0⟩ = exp
(
a†̃a†)

|00⟩ . (7)

It is easy to see that |I⟩ in Eq. (3) has the properties

a |I⟩ = ã†
|I⟩ , a†

|I⟩ = ã |I⟩ , a†a |I⟩ = ã†̃a |I⟩ . (8)

Acting both sides of Eq. (4) on the state |I⟩ and using Eq. (8), Eq. (1) is converted into
d
dt

|ρ⟩ = k
(
2ãa − a†a − ã†̃a

)
|ρ⟩ , (9)

where |ρ⟩ ≡ ρ |I⟩ and |ρ⟩ satisfies the following relations

⟨η|̃a |ρ⟩ = −

(
∂

∂η
+

η∗

2

)
⟨η|ρ⟩, ⟨η|a |ρ⟩ =

(
∂

∂η∗
+

η

2

)
⟨η|ρ⟩,
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