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a  b  s  t  r  a  c  t

Demagnetization  effects  in cross-shaped  planar  Hall  effect  sensors  cause  inhomogeneous  film  magne-
tization  and  a hysteretic  sensor  response.  Furthermore,  when  using  sensors  for  detection  of  magnetic
beads,  the  magnetostatic  field  from  the  sensor  edges  attracts  and holds  magnetic  beads  near  the  sensor
edges  causing  inhomogeneous  and  non-specific  binding  of the  beads.  We  show  theoretically  that  adding
a compensation  magnetic  stack  beneath  the sensor  stack  and  exchange-biasing  it  antiparallel  to  the sen-
sor stack,  the  magnetostatic  field  is  minimized.  We  show  experimentally  that  the  compensation  stack
removes  nonlinear  effects  from  the  sensor  response,  it strongly  reduces  hysteresis,  and  it increases  the
homogeneity  of the  bead  distribution.  Finally,  it reduces  the non-specific  binding  due  to  magnetostatic
fields  allowing  us  to completely  remove  beads  from  the  compensated  sensor  using  a water  flow  60 times
smaller  than  a flow  that failed  to  remove  beads  from  an  uncompensated  sensor.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Magnetic microsensors have many applications [1] and the
interest in their use in assays for magnetic detection of
biomolecules is growing [2–5]. In some magnetic microsensors
(planar Hall effect (PHE) sensors, spin valve sensors, magnetic tun-
neling junction sensors, etc.) a voltage signal varies as external
fields rotate the magnetization of a thin film strip of a ferromag-
netic material supporting an electric current. In small sensors or
sensors made from magnetically soft materials the demagnetiza-
tion field of the film can be comparably strong and important for
determining the spin directions in the film. Some devices, e.g.,
spin-valve sensors, use the demagnetization field to define an
easy magnetization axis of the sensor [3–5], but for other sen-
sor types demagnetization effects are detrimental, introducing
hysteresis and domain formation. Recently, we reported the size-
induced effects in exchange-biased PHE sensor crosses and found
that strong hysteresis was observed in crosses smaller than a criti-
cal dimension [6].  Hence, the miniaturization of some sensor types
is prohibited by the demagnetizing effects.

Magnetic microsensors are used for biosensing due to their sen-
sitivity to the magnetic field from magnetic beads present on [5]
and near [7,8] the sensor. The direct influence of the magnetostatic
field of the sensor on the signal from the beads can be reduced
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by using an alternating magnetic field for magnetizing the beads
[9,10]. However, the magnetostatic field of the sensor also attracts
beads to the sensor edges where magnetic charges are present [11].
To ensure reproducible detection, sedimentation and washing con-
ditions and to avoid beads sticking to the sensor edges by magnetic
forces rather than biological binding events, the magnetostatic field
near the sensor must be minimized.

This study focuses on the Ni80Fe20 based PHE sensor crosses
used in our group [12,13]. In these sensors an antiferromagnetic
film is used to exchange bias the magnetically soft Ni80Fe20 film
into a single domain with a well defined zero-field magnetization
direction. This approach fails when the exchange field is small com-
pared to the demagnetization field, i.e., when the in-plane sensor
dimensions are small or when the Ni80Fe20 film is thick [6] resulting
in hysteresis in the sensor response.

In this work, we demonstrate that both the hysteresis in the
sensor response and the attraction of beads to the sensor edges can
be strongly reduced when we  include a magnetic compensation
stack under the sensor stack. The compensation stack is identical to
the sensor stack, except that it is exchange-biased in the antiparallel
direction. The two  stacks are separated by an electrically insulating
spacer and when the total stack is structured to form the sensors
the magnetizations of the two  stacks form a closed magnetic flux
loop that significantly reduces the magnetostatic field outside the
sensors and the demagnetization field inside the sensors. The effect
of the magnetic compensation stack is particularly pronounced for
cross-shaped PHE sensors but the approach is also relevant for other
sensor types where a large magnetostatic field outside the sensor
is undesirable.
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2. Theory

2.1. Planar Hall effect sensors

The sensor geometry and the coordinate system and sensor vari-
ables are defined in Fig. 1(a). A planar Hall effect sensor consisting of
a ferromagnetic Ni80Fe20 thin film of width w and thickness tFM car-
rying a uniformly distributed current in the x-direction Ix = Jx w tFM

will ideally develop the Hall voltage,

Vy = t−1
FMIx(�‖ − �⊥) cos � sin �. (1)

where �‖ and �⊥ are the resistivities parallel and perpendicular
to the magnetization direction, respectively, and � is the angle
between the magnetization and the x-direction.

The sensors are exchange-biased in the positive x-direction
(� = 0). The x-axis is also the easy axis of the crystal anisotropy.
In [6] we have shown that the central part of a planar Hall effect
sensor cross essentially remains a single domain when the cross
dimension is reduced, but that the demagnetization effects favor
magnetization orientations of the central part of the cross with
� = �/4 + n�/2, n = 1, 2, 3, 4. The value of � is estimated by minimizing
the normalized energy density, u, given by

u = −Hex cos � − 1
2

HKcos2� − 1
8

Hmscos2(2�) − Hy sin � (2)

where Hy is an external magnetic field applied in the y-direction,
Hex is the exchange bias field, HK is the anisotropy field and Hms is
a field representing the demagnetization effects [6].

Minimizing u in Eq. (2) to obtain � and inserting the result in
Eq. (1) yields Vy as function of Hy. For small values of Hy, Vy can be
written

Vy = IxS0〈Hy〉 (3)

where S0 ≈ (�‖ − �⊥)/[tFM · (Hex + HK − Hms)] is the low-field sensi-
tivity and 〈Hy〉 is the average y-component of the magnetic field
acting on the active sensor area [6].

In this study Vy is recorded using lock-in detection using a sinu-
soidal current Ix(t) = Ix,0 sin (ωt). When measuring the sensor signal
as function of a constant external field, we use the first harmonic
in-phase component V1

′, given by [10]

V ′
1 = 2−1/2t−1

FMIx,0(�‖ − �⊥) cos � sin � (4)

When detecting beads we use the magnetic field caused by Ix(t) (the
self-field) to magnetize the beads. The field on the sensor from the
beads can then be observed in the second harmonic out-of-phase
component V2

′′ of Vy given by

V ′′
2 = −2−3/2I2

x,0S0(�0 + �1) (5)

where �0 is a geometry-dependent constant that accounts for the
self-field on the sensor from current shunting in the antiferromag-
netic layer, and �1 accounts for the contribution from the beads
(�1 = 0 when no beads are present) [10,11].

2.2. Forces on a bead

In this section, we calculate the magnetic force on a bead due
to the magnetostatic field from the sensors. This force is largest
near the edges of the y-axis arms of the cross-shaped sensor. We
get an upper estimate of the force by calculating it for an infinitely
long strip along the y-axis of width w and thickness tFM, which
is uniformly magnetized in the x-direction with a magnetization
M = Mx̂.  Representing the magnetization as the bound surface cur-
rents with density Kb = M × n, where n is an outwards facing normal
vector to the surface, we obtain Kb = ±Mŷ for the faces parallel to

the xy-plane and Kb = 0 elsewhere. The magnetic flux density at any
point r can then be calculated from the Biot-Savart law as

B(r) = �0

4�

∫
Kb(r′) × (r − r′)

(r − r′)3/2
da′, (6)

where �0 is the permeability of free space, r′ is the position of the
infinitesimal area da′ and the integral is over the entire surface
of the strip. Assuming that a magnetic bead has a magnetization
proportional to the magnetic field in the absence of the bead, i.e.,
M = ��−1

0 B, where � is the effective bead susceptibility, and that
the magnetic force varies little over the size of the bead, we can
calculate the magnetic force on the bead as [14]

Fmag 	 �D3�

12�0
∇ (

B2
)

, (7)

Here D is the diameter of the bead and B is given by Eq. (6).
Another force on the bead is the buoyancy force, Fbouy given by:

Fbouy = −ẑg
�

6
D3(	b − 	f) (8)

where g = 9.82 m/s2 is the magnitude of the gravitational accel-
eration and 	b and 	f are the densities of the bead and
the fluid, respectively. For the beads used in this study with
	b = 2.5 × 103 kg/m3 and D = 250 nm,  the buoyancy force in water
is 0.12 fN.

To assess the importance of Brownian motion of the beads we
follow the considerations of Friedman and Yellen [15]. When the
thermal energy kBT, where kB is Boltzmann’s constant, is low com-
pared to the work FextD performed by the external force Fext to move
the bead a single bead diameter, it is reasonable to use a determin-
istic description of the bead trajectories. In the other limit, the bead
suspension is better described in terms of a statistical bead distri-
bution function. The criterion kBT = FextD can be rewritten to define
a ‘Brownian force’ FBrown = kBT/D. When Fext � FBrown the trajecto-
ries of single beads will be strongly perturbed by Brownian motion
and a distribution description is adequate and when Fext � FBrown
the influence of Brownian motion on the bead trajectory is negligi-
ble and a deterministic description can be used. For the beads used
in the present study, we calculate FBrown = 16 fN. Hence, we obtain
FBrown/Fbouy = 136 showing that a deterministic description of the
sedimentation of these beads will be inadequate if no magnetic
forces are affecting them. Including magnetic forces we  require
that Fmag/FBrown � 1, i.e., Fmag/Fbuoy � 102 for the beads to follow
deterministic trajectories. It should be noted that this ratio depends
strongly on the bead diameter as it scales with D4.

Finally, it is relevant to consider the tension on a molecular
tether attaching a bead to the top of the sensor surface when a
fluid is flowing in the channel. The fluid velocity along the chan-
nel can be written vx(yc, zc), where (yc, zc) denotes the coordinate
in the cross-section of the channel of width wc and height hc with
its center at (yc, zc) = (0, hc/2). An exact analytical expression for
vx(yc, zc) can, e.g., be found in [16]. The channel in the present
study has wc = 0.4 mm and hc = 1 mm.  For a fluid flow driven at
the flow rate Q = 1 mL/h we find an average fluid flow velocity of
vx = Q/(wc hc) = 0.69 mm/s. Using the exact theoretical result for
vx(yc, zc), we calculate the fluid shear rate, S, at the sensor at the
same flow rate to S = (∂vx/∂z)(yc,zc)=(0,0) = 10 s−1. Values of these
parameters for other fluid flow rates can be obtained by multiply-
ing these numbers with the value of Q in mL/h. The drag force, FD
and torque, �D on a stationary spherical bead in contact with the
floor of the fluid channel is [17]:

FD = 8.01�SD2, �D = 0.185DFD, (9)

where � is the viscosity (≈0.9 mPa  s at T = 298 K). For S =10 s−1 and
D = 250 nm we  get FD = 4.6 fN and �D = 2.1 × 10−22 N m.  Using the
method of Chang and Hammer [18] we  calculate the tension T on
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