
Please cite this article in press as: T.D. Pham, H. Yan, Spatial-dependence recurrence sample entropy, Physica A (2017),
https://doi.org/10.1016/j.physa.2017.12.015.

Physica A ( ) –

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Spatial-dependence recurrence sample entropy
Tuan D. Pham a,*, Hong Yan b

a Department of Biomedical Engineering, Linköping University, 58183 Linköping, Sweden
b Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong

h i g h l i g h t s

• Quantifying irregularity with sample entropy is based only on the distance measure.
• Sequential ordering is an important criterion for computing sample similarity.
• The new method is introduced to consider both sources of information.
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a b s t r a c t

Measuring complexity in termsof the predictability of time series is amajor area of research
in science and engineering, and its applications are spreading throughout many scientific
disciplines, where the analysis of physiological signals is perhaps themost widely reported
in literature. Sample entropy is a popular measure for quantifying signal irregularity.
However, the sample entropy does not take sequential information, which is inherently
useful, into its calculation of sample similarity. Here, we develop a method that is based
on themathematical principle of the sample entropy and enables the capture of sequential
information of a time series in the context of spatial dependence provided by the binary-
level co-occurrence matrix of a recurrence plot. Experimental results on time-series data
of the Lorenz system, physiological signals of gait maturation in healthy children, and gait
dynamics in Huntington’s disease show the potential of the proposed method.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In the combination of statistics and information theory, the approximate entropy, denoted as ApEn, was developed
for quantifying the amount of irregularity or predictability of fluctuations in time series data [1,2]. The sample entropy
[3], denoted as SampEn, was then introduced as a modified algorithm of ApEn that removes the bias in counting self-
matching patterns included in the ApEn. Both ApEn and SampEn, and their modified versions have been increasingly found
useful in many applications, particularly in the analysis of physiological time series. Some recently published works include
applications in network theory [4], analyses of heart rate variability and systolic blood pressure variability [5], postural
analysis [6], and analysis of traffic signals [7]. However, several applications and studies are reportedly in favor of SampEn
[8–10].

Given its popularity as a useful measure for quantifying irregularity of time series, SampEn has several technical
shortcomings. Many attempts have been made to improve SampEnmainly to reduce its sensitivity to the selection of values
for its model parameters [11–13]. One of the most recent efforts has tried to modify SampEn to overcome the limitation
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about the relationship between the parameters and the length of time series [7]. However, there is little effort in developing
the formulation of SampEn that can also capture the sequential ordering of the time series, except for the indirect case of
usingmultiple scales of time series data [10,14–16]. In this paper, we introduce amethod for quantifying irregularity in time
series based on the formulation of SampEn that computes the probability of sample similarity by incorporating sources of
information from the distance measure of sample points of a time-series and the spatial orientation of the binary-level co-
occurrence matrix of its recurrence plot, where the latter information is a spatial representation of the sequential ordering.

The rest of the paper is organized as follows. Section 2 briefly presents the mathematical formulations of the sample
entropy, recurrence plots, and binary-level co-occurrence matrix, which are used as the basis for developing the framework
of the proposed spatial-dependence recurrence sample entropy. Experimental results and discussion about the proposed
method are presented in Section 3, which includes the testing and comparison of proposed method and the sample entropy
using three datasets: the time series of the Lorenz system and their surrogate time series, the complex physiological signals
of gait maturation in children, and gait dynamics in Huntington’s disease obtained from publicly accessible PhysioNet
databases.

2. Methods

2.1. Sample entropy

The sample entropy (SampEn) [3] is a measure of irregularity in time series. The formulation of SampEn is briefly
described as follows. Consider a time series X of length N taken at regular intervals: X = (x1, x2, . . . , xN ), and a given
embedding dimension m, a set of newly reconstructed time series from X , denoted as Ym, can be established as Ym

=

(ym1 , ym2 , . . . , ymN−m+1), where ymi = (xi, xi+1, . . . , xi+m−1), i = 1, 2, . . . ,N − m + 1. The probability of vector ymi being similar
to vectors ymj is computed as (N − m − 1)−1 times the number of vectors ymj within a similarity tolerance of ymi , where
self-matches are excluded, and mathematically expressed as follows

Bm
i (r) =

1
N − m − 1

N−m∑
j=1

H[d(ymi , ymj )], i ̸= j, (1)

where r is a real positive value for the similarity tolerance, and H(d(ymi , ymj )) is the Heaviside function, defined as

H[d(ymi , ymj )] =

{
1 : d(ymi , ymj ) ≤ r
0 : d(ymi , ymj ) > r

(2)

The distance between the two vectors is obtained by using the Chebyshev distance or the L∞ metric, where the distance
between two vectors is the largest of their differences along any coordinate dimension and mathematically expressed as

d(ymi , ymj ) = max
k

(|xi+k−1 − xj+k−1|), k = 1, 2, . . .,m. (3)

The probability of pairs of vectors or data points of length m having the Chebyshev distance ≤ r , denoted as Bm(r), is
expressed as

Bm(r) =
1

N − m

N−m∑
i=1

Bm
i (r). (4)

Similarly, Am
i (r) is defined as (N − m − 1)−1 times the number of vectors yjm+1 within a similarity tolerance of yim+1,

where j = 1, . . . ,N − m, j ̸= i, and setting

Am(r) =
1

N − m

N−m∑
i=1

Am
i (r). (5)

Finally, SampEn is calculated as

SampEn(m, r,N) = − log
[
Am(r)
Bm(r)

]
, (6)

where Am(r) ≤ Bm(r), which is imposed by the Chebyshev distance.

2.2. Recurrence plots

In nonlinear dynamics and chaos theory, a recurrence plot (RP) [17] is a visualization method that shows the times at
which a phase-space trajectory approximately revisits the same area in the phase space. Let X = {x} be a set of phase-space
states, in which xi is the ith state of a dynamical system inm-dimensional space. An RP is constructed as an N × N matrix in
which an element (i, j), i = 1, . . . ,N , j = 1, . . . ,N , is represented with a black dot if xi and xj are considered to be closed to
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