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h i g h l i g h t s

• An entropy regularized mixture model (called EMM) is proposed.
• EMM is able to infer the number of communities and meanwhile identify network structure.
• The new method is compared with several competing methods on a range of well-known synthetic and real networks.
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a b s t r a c t

Community detection is a key exploratory tool in network analysis and has received much
attention in recent years. NMM (Newman’s mixture model) is one of the best models for
exploring a range of network structures including community structure, bipartite and core–
periphery structures, etc. However, NMM needs to know the number of communities in
advance. Therefore, in this study, we have proposed an entropy regularizedmixture model
(called EMM), which is capable of inferring the number of communities and identifying
network structure contained in a network, simultaneously. In the model, by minimizing
the entropy of mixing coefficients of NMMusing EM (expectation–maximization) solution,
the small clusters contained little information can be discarded step by step. The empirical
study on both synthetic networks and real networks has shown that the proposed model
EMM is superior to the state-of-the-art methods.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The study of complex networks has become an important area of multidisciplinary research involving physics, math-
ematics, biology, social science, informatics, and other theoretical and applied sciences [1–6]. However, it is not easy to
understand the complex networks by simple observation because of their complexity. One of the most effective approaches
to reduce this complexity is to uncover the structures of these real-world networks [7,8]. A large number of algorithmic
methods have been proposed to explore structures of observed networks during the last several years [9–14].

The Newman’s Mixture Model (NMM) [15] is one of the best tools for exploring structures. The most striking advantage
of NMM lies in its ability to identify a very broad range of types of structure in networks without any prior knowledge of
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the structures [16], such as assortative and disassortative structures [17], mixture structures [18], and so forth. Another
advantage of NMM is that the algorithm of NMM is capable of dealing with the directed networks, undirected networks, and
weighted networks. In addition, the efficiency of the algorithm is high in terms of computation complexity [16]. However,
NMM assumes that in a community the total outgoing degree must be larger than zero [16,19]. To overcome this limitation,
Ramasco andMungan (2008) [19] suggested dealingwith the incoming degrees, outgoing degrees, and bidirectional degrees
separately; Wang and Lai (2008) [16] solved this problem by assuming that all nodes in a community share the same
prior probability to connect unidirectionally to a given node. Moreover, NMM needs to know the number of communities
contained in a network in advance. This is a common problem of most existing community detection methods.

In the literature, there are several approaches to infer the number of communities and identify network structures,
simultaneously. One approach is modularity optimization [20]. Modularity optimization is the best known method where
the modularity function is defined to measure the quality of communities contained in a network. Optimization methods
such as greedy optimization [20], extremal optimization [21], and simulated annealing [22], etc. are used to optimize the
modularity function. However, the modularity has been exposed to resolution limits [23–25]. Another approach is to use
Bayesian statistical inference based on stochastic generative model. In particular, some of Bayesian inference methods
directly put prior distributions on the number of communities K . Chen et al. (2015, 2016) [26,27] considered a fully Bayesian
framework, in which the Chinese restaurant process (CRP) [28] was chosen as a prior distribution and placed on the
number of communities K . While it has been recently observed that CRPs lead to inconsistent estimation of the number
of communities under certain conditions [29,30]. Newman and Reinert (2016) [8] combined empirical Bayes method and
maximum-entropy prior criterion, in which uniform probability distributions were placed on the number of communities K ,
the community assignment probabilities π , and an exponential distribution on the edge probabilities θ . Then, the posterior
probability P(K |A)was calculated byMarkov chainMonte Carlo importance sampling [31],whereAwas the adjacencymatrix
of the observed network. The most likely value of K was the one for which P(K |A) was the largest. On the contrary, some of
Bayesian inference methods did not directly assume prior distributions on the number of communities K . D Jin et al. (2016)
[32] used a hierarchical Bayesian approach based on the idea of ranking node popularities within communities to find K and
identify network structures, simultaneously. Exponential prior was placed on each column of the expected degree matrix
D = (dik)n×K (instead ofK ),where dik was the expected degree of node i in the kth community. After compressing the columns
ofD and removing the irrelevant communities kwhose expected degreeswere zero or very close to zero, the inferred number
of communities was derived.

Different from the above ideas, we attempt to put a prior entropy on mixing coefficients π contained in NMM to infer
the number of communities, which needs to be known in advance in the original version NMM. According to the principle of
maximum entropy, if nothing is known about a distribution, then the distribution with the largest entropy should be chosen
as the least-informative default. This implies that maximum-entropy (least informative) prior probability distributions on π
are uniformly random, i.e.,πr = 1/K (r = 1, 2, . . . , K ). From the view of community detection, the samemixing coefficients
πr = 1/K (r = 1, 2, . . . , K ) mean that the probabilities that nodes are assigned to each community are the same. This
leads to the same size of communities. On the contrary, by minimizing the prior entropy, the sizes of some communities
will become smaller, and others will become larger. If the sizes of some communities are too small (i.e., the corresponding
mixing coefficients are zero or close to zero), we remove themand the number of communities goes down. Therefore, putting
a prior entropy on mixing coefficients can control the sizes of all communities. A natural approach for mixture models with
an unknown number of communities is to put a prior entropy onmixing coefficients [33]. In this study, based on this idea, to
overcome the limitation of NMM that assumes to have the knowledge of the number of communities in advance, we propose
an entropy regularized NMM method (EMM) to infer the number of communities and to detect the structure of a network,
simultaneously. Roughly, our method can be divided into two stages: the first stage is to minimize the entropy for obtaining
the number of communities, the second stage is to estimate the parameters of NMM for getting the community labels of
nodes. Theoretical analysis and experimental tests have shown the effectiveness of EMM.

The rest of the paper is structured as follows. In Section 2, we present an entropy regularized mixture model (EMM).
In Section 3, we show the performance of our method on some artificial networks and real networks. Finally, we draw the
conclusions in Section 4.

2. An entropy regularized mixture model (EMM)

In this section, we first review NMM, then introduce our entropy regularized mixture model (EMM).

2.1. Newman’s mixture model (NMM)

Supposewe have a network of n nodes connected by directed edges, the adjacencymatrix of observed network is denoted
by A with elements Aij = 1 if there is an edge from node i to j and 0 otherwise. The likelihood of NMM is defined as
follows [15].

Pr(A, g|π, θ ) = Pr(A|g, π, θ ) Pr(g|π, θ )
=
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