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• Both the daily and long-range temporal dependence exert considerable influence on the traffic flow series.
• The daily temporal dependence creates crossover phenomenon when estimating the Hurst.
• PCA-based method turns out to be a better method to extract the daily temporal dependence.
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a b s t r a c t

Long-range temporal dependence is an important research perspective for modelling of
traffic flow time series. Various methods have been proposed to depict the long-range
temporal dependence, including autocorrelation function analysis, spectral analysis and
fractal analysis. However, few researches have studied the daily temporal dependence
(i.e. the similarity between different daily traffic flow time series), which can help us
better understand the long-range temporal dependence, such as the origin of crossover
phenomenon. Moreover, considering both types of dependence contributes to establishing
more accurate model and depicting the properties of traffic flow time series. In this paper,
we study the properties of daily temporal dependence by simple average method and
Principal Component Analysis (PCA) based method. Meanwhile, we also study the long-
range temporal dependence by Detrended Fluctuation Analysis (DFA) and Multifractal
Detrended Fluctuation Analysis (MFDFA). The results show that both the daily and long-
range temporal dependence exert considerable influence on the traffic flow series. The
DFA results reveal that the daily temporal dependence creates crossover phenomenon
when estimating the Hurst exponent which depicts the long-range temporal dependence.
Furthermore, through the comparison of the DFA test, PCA-based method turns out to be
a better method to extract the daily temporal dependence especially when the difference
between days is significant.
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1. Introduction

Traffic flow time series analysis is a very important part of most Intelligent Transportation Systems (ITS) research and
applications [1]. As pointed out in [2], modelling of traffic flow time series is very crucial to traffic flow prediction, missing
traffic data imputation, traffic data compression and abnormal traffic data detection.

Traffic flow time series is so complicated that a significant amount of work has been proposed to describe different
perspectives of traffic flow time series. For example, Williams et al. [3] assumed that weekly-periodic exists in traffic
flow time series and can be extracted by seasonal autoregressive integrated moving average (ARIMA) process. Vlahogianni
et al. [4] proposed a multilayer strategy which identifies patterns of traffic based on their structure and evolution in time.
Chen et al. [5] assumed that traffic flow time series is affected by internal and external factors which can be modelled
respectively. In [6], it assumed intra-day trend exists and can be extracted by simple averagemethod, PCA-basedmethod and
wavelet based methods. Li et al. [7] utilized the information of temporal and spatial dependence of traffic flow to improve
the efficiency of missing data imputing methods. Ran et al. [8] proposed a tensor based method modelling traffic flow time
series into high-dimensional matrices. Cheng et al. [9] proposed a modelled traffic flow time series by chaos theory and
promoted the performance for short-term traffic flow prediction. Feng et al. [10,11] extracted the daily trend of traffic flow
time series by PCA, Kronecker Product and tensor based methods and improved the performance of data compression.

In all the research perspectives mentioned above, long-range temporal dependence in traffic flow time series receive
special attentions. Generally, temporal dependence relates to the rate of decay of statistical dependence of two points with
increasing time interval. A phenomenon is usually considered to have long-range dependence if the dependence decays
more slowly than an exponential decay, typically a power-like decay. Long-range temporal dependence has been found in
various fields. For example, Bunde et al. [12] found that the persistence, characterized by the correlation of temperature
variations separated by days, has the long-range temporal dependence. Plerou et al. [13] found the long-range temporal
dependence in financial time series. Peng et al. [14] found long-range temporal dependence in intron-containing genes and
in nontranscribed regulatory DNA sequences. In contrast, some other time series (e.g. the output of a Markov process) do
not behave long-range temporally dependence. Various methods have been proposed to depict the long-range temporal
dependence, such as autocorrelation function analysis, spectral analysis and fractal analysis.

In [15], autocorrelation function analysis is proposed to distinguish between short- and long-range correlated depen-
dence. The autocorrelation function of a time series can be expressed as

C(s) =
E[(xi − x̄)(xi+s − x̄)]

σ 2 , (1)

where E means the mathematical expectation, x̄ is the average of x and σ is the variance. A time series is defined to be
short-range correlated if the autocorrelation function declines exponentially and long-range correlated if the autocorrelation
function declines as a power-law, C(s) ∝ s−γ , with a correlation exponent 0 < γ < 1. As shown inmany studies, traffic flow
time series is long-range correlated to a large extent. For example, Stathopoulos et al. [16] utilized partial autocorrelation
function to model the long-range temporal dependence of traffic flow time series to promote the short-term prediction.

Spectral analysis is another tool to identify long-range temporal dependence of time series in frequency domain. As
shown in [17], we can apply spectral analysis techniques (Fourier transform) and then calculate the power spectrum S(f ) of
the time series as a function of the frequency to obtain scaling behaviour of temporal dependence. For long-range correlated
data characterized by the correlation exponent 0 < γ < 1, we have

S(f ) ∝ f −β with β = 1 − γ , (2)

which can be derived from the Wiener–Khinchin theorem, as discussed in [18]. In [19], it is observed that the fluctuation of
a traffic current on an expressway obeys the 1/f law for low spectral frequencies. We say a time series obeys 1/f law when
its power spectral density is proportional to the inverse of frequency. Nassab et al. [20] studied the 1/f law for traffic flow
with open boundaries and additional connection sites.

A fractal series refers to a series that can be characterized by a scaling law with a fractal. Hurst exponent, introduced by
Hurst [21], is widely used to analyse a fractal series. There are many methods to estimate the Hurst exponent [22] during
which fluctuation analysis (FA) is one of the most commonly used [14]. As shown in [23], traffic flow time series is non-
stationary, so Detrended Fluctuation Analysis (DFA) is usually used to analyse the traffic flow time series [24]. Compared to
FA, DFA removes a local polynomial trend of time series to eliminate the influence of non-stationary. More details about the
difference between DFA and FA can be found in [25]. There are many studies on long-range temporal dependence of traffic
flow time series by Hurst exponent. Shang et al. [26] applied the generalized Hurst exponent to traffic congestion warning.
Li et al. [22] proposed a new traffic flow model to explain the crossover phenomena of Hurst exponent.

There are internal relations between the methods mentioned above. As proven in [27], the relationship among Hurst
exponent, spectral analysis and autocorrelation function analysis for mono-fractal time series is

2H = 1 + β = 2 − γ , (3)

where H is Hurst exponent, γ is correlation exponent and β is calculated by Eq. (2). Mono-fractal time series refers to a
series that follows a scaling lawwith a single fractal exponent. Therefore, all thesemethods depict the long-range correlated
temporal dependence for mono-fractal time series.
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