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h i g h l i g h t s

• A stochastic cell-to-cell HIV-1 model with distributed delay is proposed and investigated.
• We establish sufficient conditions for extinction of the disease.
• We establish sufficient conditions for the existence of an ergodic stationary distribution.
• The stationary distribution implies that the disease can be persistent in the mean.
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a b s t r a c t

In this paper, we consider a stochastic cell-to-cell HIV-1 model with distributed delay.
Firstly, we show that there is a global positive solution of this model before exploring its
long-time behavior. Then sufficient conditions for extinction of the disease are established.
Moreover, we obtain sufficient conditions for the existence of an ergodic stationary distri-
bution of themodel by constructing a suitable stochastic Lyapunov function. The stationary
distribution implies that the disease is persistent in the mean. Finally, we provide some
numerical examples to illustrate theoretical results.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Human immunodeficiency virus-1 (HIV-1) continues to be amajor global public health issue and priority. Many scientists
have made great effort against HIV-1, and they are still going on. Mathematics and biological researchers also contribute to
this by revealing its transmission and dynamics. Recently, many mathematical models have been formulated to describe
the immunological response to infection with HIV-1. Most of these models focus on cell-free viral spread in a compartment
such as the bloodstream, see for example, Callaway and Perelson [1], Spouge, Shrager and Dimitrov [2], Kirschner, Lenhart
and Serbin [3], Kirschner and Webb [4–6], McLean and Kirkwood [7], McLean and Nowak [8], Müller et al. [9], Nowak and
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Bangham [10], Nowak andMay [11,12], Perelson, Kirschner andDeBoer [13], Perelson [14], Perelson andNelson [15],Wodarz
et al. [16], etc. Some most advances in areas of modeling cell-to-cell transmission and of modeling physical processes with
distributed time delay [17–20]. And these models have been used to explain different phenomena. This is because HIV-1
mathematical models can provide insights into the dynamics of viral load in vivo and can play an important role in the
development of a better understanding of HIV/AIDS and drug therapies. Especially, by assuming that infection is spread
directly from infected cells to healthy cells and neglecting the effects of free virus, Culshaw et al. [17] considered a two-
dimensional model of cell-to-cell spread of HIV-1 in tissue cultures⎧⎪⎪⎨⎪⎪⎩

dC(t)
dt

= rCC(t)
(
1 −

C(t) + I(t)
CM

)
− κIC(t)I(t),

dI(t)
dt

= κ ′

I

∫ t

−∞

C(u)I(u)F (t − u)du − µI I(t),
(1.1)

whereC(t) and I(t) denote the concentration of healthy cells and infected cells at time t , respectively and all of the parameters
are positive constants. rC is the effective reproductive rate of healthy cells (the term is the total reproductive rate for healthy
cells r minus the death rate for healthy cells µC ), and so rCC(t) denotes the number of effective reproductive cells per unit
time, CM is the effective carrying capacity of system (1.1), κI denotes the infection of healthy cells by the infected cells in a
well-fixed system, κ

′
I
κI

is the fraction of cells surviving the incubation period, µI is the death rate of the infected cells. It is
assumed that the cells, which are productively infectious at time t , were infected u time units ago, where u is distributed
according to a probability distribution F (u), called the delay kernel.

Taking the weak kernel function F (u) = αe−αu (α > 0) and letting

X(t) =

∫ t

−∞

αe−α(t−u)C(u)I(u)du,

system (1.1) is equivalent to the following system⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dC(t)
dt

= rCC(t)
(
1 −

C(t) + I(t)
CM

)
− κIC(t)I(t),

dI(t)
dt

= κ ′

IX(t) − µI I(t),

dX(t)
dt

= αC(t)I(t) − αX(t).

(1.2)

There are three equilibria in system (1.2): the trivial equilibrium E0 = (0, 0, 0), the healthy equilibrium E1 = (CM , 0, 0),
and the infected equilibrium E = (C, I, X) provided κ ′

I >
µI
CM

, where C =
µI
κ ′
I
, I =

rC (κ ′
I CM−µI )

κ ′
I (κICM+rC )

, X =
µI
κ ′
I
I . When CM <

µI
κI
,

the healthy cells predominate and infected cells die exponentially. In this case E0, E are unstable, E1 is asymptotically stable.
When µI

κ ′
I
< CM <

rC
CM

, E0 remains unstable and E1 is also unstable. In this situation, healthy cells and infected cells co-exist.

Furthermore, if a1(α) > 0, a3(α) > 0 and a1(α)a2(α) − a3(α) > 0, then the positive steady state E is asymptotically stable,
where a1(α) =

rC
CM

C + µI + α, a2(α) = α( rC
CM

C) +
µI rC
CM

C , a3(α) = α(κ ′

I +
rC
CM

)µI I [17].
On the other hand, in the real world, epidemic models are inevitably subject to the environmental noise, which is an

important component in an ecosystem (see e.g. [21,22]). Hence the deterministicmodels have some limitations in predicting
the future dynamics of the system accurately. When modeling biological phenomena such as HIV dynamics, different cells
and infective virus particles reacting in the same environment can often give different results. Lately, by incorporating
the effects of a fluctuating environment, many authors have studied epidemic models with parameter perturbations (see
e.g. [23–31]). For example, Ji and Jiang [23] considered a stochastic HIV-1 infection model with cell-mediated immune
response. They established a sufficient condition for the stochastic asymptotic stability in the large of the infection-free
equilibrium and gave the conditions for the solution fluctuating around the two infection equilibria (one without CTLs
being activated and the other with). Sánchez-Taltavull et al. [24] presented a stochastic model of the dynamics of the HIV-1
infection and studied the effect of the rate of latently infected cell activation on the average extinction time of the infection.
Liu [30] analyzed a model of cell-to-cell HIV-1 infection to CD4+ T cells perturbed by stochastic perturbations. He studied
the asymptotic behavior of the solution and he also investigated the existence of ergodic stationary distribution.

There are different approaches to introduce random perturbations into the model, both from a mathematical and
biological perspective. In this paper, we assume that the environmental noise is proportional to the variables C(t) and I(t).
For convenience inmathematics, we also assume that the environmental noise is proportional to X(t) (see Remark 4.1). Then
the stochastic version corresponding to system (1.2) takes the following form⎧⎪⎪⎨⎪⎪⎩

dC(t) =

[
rCC(t)

(
1 −

C(t) + I(t)
CM

)
− κIC(t)I(t)

]
dt + σ1C(t)dB1(t),

dI(t) = [κ ′

IX(t) − µI I(t)]dt + σ2I(t)dB2(t),
dX(t) = [αC(t)I(t) − αX(t)]dt + σ3X(t)dB3(t),

(1.3)
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