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h i g h l i g h t s

• A stochastic chemostat model with an inhibitor and noise is considered.
• The asymptotic behaviors of the solutions of the stochastic system are studied.
• The large noise can make the microorganisms become extinct almost surely.

a r t i c l e i n f o

Article history:
Received 11 May 2017
Received in revised form 26 September
2017
Available online xxxx

Keywords:
Stochastic chemostat model
Inhibitor
Itô formula
Lyapunov function
Asymptotic behavior

a b s t r a c t

In this paper, a stochastic chemostat model with an inhibitor is considered, here the
inhibitor is input from an external source and two organisms in chemostat compete for
a nutrient. Firstly, we show that the system has a unique global positive solution. Secondly,
by constructing some suitable Lyapunov functions, we investigate that the average in
time of the second moment of the solutions of the stochastic model is bounded for a
relatively small noise. That is, the asymptotic behaviors of the stochastic system around
the equilibrium points of the deterministic system are studied. However, the sufficient
large noise can make the microorganisms become extinct with probability one, although
the solutions to the original deterministic model may be persistent. Finally, the obtained
analytical results are illustrated by computer simulations.

© 2017 Published by Elsevier B.V.

1. Introduction

The chemostat has a significant role in mathematical biology and theoretical ecology, many authors have studied the
chemostat models [1–7]. However, the inhibitor affects the nutrient uptake rate of one of the competitors in chemostat but
is taken up by the otherwithout ill effect. TheNalidixic acid used in the experiments of Hansen andHubbell [8] is an inhibitor.
Its effect on one strain of E. coli was essentially nil while the growth rate of the other was severely diminished [1]. Lenski
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and Hattingh have first proposed a chemostat model with an inhibitor as follows [9]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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(
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)
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(1.1)

where S(t) represents the nutrient concentration at time t in the culture vessel, and x1(t), x2(t), the concentration of
two microorganisms, p(t), the concentration of the inhibitor. All the parameters are positive constants. S0 is the input
concentration of the nutrient, p0 is the input concentration of the inhibitor. D is the commonwashout rate. miS(t)

(ai+S(t)) (i = 1, 2)
stand for the Monod growth functional response, where the terms mi, ai (i = 1, 2) are the maximal growth rates of the
competitors (without an inhibitor) and half-saturation constants, respectively. The dynamical behaviors of model (1.1) are
completely determined by the break-even concentration λi (i = 1, 2), where λi =

Dai
mi−D . The δ and K have same effects

for the inhibitor, with δ the maximal uptake rate by x2 and K a half-saturation parameter. The function f (p) stands for the
degree of inhibitor of p on the growth rate of x1. It adjusts the effective value of the parameter m1; the quantity m1f (p)
represents the maximal growth rate of the microorganism x1 if the concentration of the inhibitor is p. As noted in [1], the
ability of x2 to consume the inhibitor (δ > 0) is of crucial importance. Lenski and Hattingh [9] refer to this ability of x2 to
‘‘detoxify’’ the environment. Hsu and Waltman [10] reduced the problem (1.1) to a three-dimensional competitive system
by using preliminary analysis. And by the theory of monotone flows, they obtained several global results. Global results fail
when questions ofmultiple limit cycles cannot be answered. Especially, they proposed that the chemostat with inhibitor can
model competition between two populations ofmicroorganisms,where one strain is resistant to an antibiotic or competition
in detoxification, a system where one strain can take up the pollutant while the other is inhibited by it.

Assume that the function f (p) in (1.1) satisfies:
(i) f (p) ≥ 0, f (0) = 1;
(ii) f ′(p) < 0, p > 0.

Denote

λ0 =
Da1

m1f (p0) − D
.

Referring to [1] or [10], we give the following Lemmas about the system (1.1).

Lemma1.1. If mi ≤ Dor mi > D, λi > S0(i = 1, 2), the extinct equilibriumE0 = (S0, 0, 0, p0) exists, and the E0 is asymptotically
stable with λ0 > S0.

Lemma 1.2. If mi > D, 0 < λ2 < λ1 < S0, the rest point E1 = (S1, 0, x̂2, p̂) exists with S1 = λ2, x̂2 = S0 −λ2 and p̂ the positive
root of D(p0 − p)(K + p) − δ(1 − λ2)p = 0. The E1 is asymptotically stable if λ2 <

Da1
m1f (p̂)−D .

Lemma 1.3. If mi > D, 0 < λ1 < λ2 < S0 and 0 < λ0 < λ2, the system (1.2) has a asymptotically stable boundary equilibrium
E2 = (λ0, S0 − λ0, 0, p0).

Lemma 1.4. The positive equilibrium E∗
= (S∗, x∗

1, x
∗

2, p
∗) exists if mi > D, λ1 < λ2 < S0 and λ2 < λ0. According to the

Routh–Hurwitz , the E∗ will be asymptotically stable if the following conditions holds:

(i)
⏐⏐⏐⏐a1 a3
1 a2

⏐⏐⏐⏐ > 0. (ii)

⏐⏐⏐⏐⏐a1 a3 0
1 a2 a4
0 a1 a3

⏐⏐⏐⏐⏐ > 0. (iii)

⏐⏐⏐⏐⏐⏐⏐
a1 a3 0 0
1 a2 a4 0
0 a1 a3 0
0 1 a2 a4

⏐⏐⏐⏐⏐⏐⏐ > 0

where
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2
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·
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·
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1

a1 + S∗
· f ′(p∗).

As mentioned above, we notice that the chemostat models are described by the deterministic models. This is valid only
at the macroscopic scale, that is, the stochastic effects can be neglected or averaged out, in view of the law of large number.
However, the natural growth of species are inevitably affected by random environment noise. It turns out that a reasonable
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