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a b s t r a c t

We study the disturbance on two-dimensional flow generated by a circular obstacle of
radius r placed downwind in front of a duct of width w at a distance λ between the center
of the obstacle and the inlet position of the channel. Our results show that, at low Reynolds
conditions, the flux φ at the duct exhibits distinct regimes for different λ intervals.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The hydrodynamical interaction between a flowing fluid and suspended particles is an interesting problem with
important applications in science and technology [1–3]. There are several situations where microscale suspended soft
particlesmight clog the duct cross section disturbing or even interrupting the flow.When the fluid is viscous and the particles
are deformable, they can readily undergo large deformations to accommodate the hydrodynamic forces. This process is
observed in many situations and scales, from blood flow in microscopic vessels up to sewage flow in macroscopic pipes. In
vasculatory systems, we find some extreme cases where the cross section of the capillary vessel and the size of the blood
cells that flow through themhave the same order ofmagnitude [4]. In this case, the cellsmust undergo a large deformation in
order to travel along the vessels. In some blood diseases the deformability potential of the red cells is reduced [5,6] blocking
the flow through microvascular vessels. In other cases the blood can coagulate to form large clusters that behave like a
solid [7]. As a consequence of these processes, in the extreme limit, the fluid flow is eventually interrupted. It is therefore
important to understand how the presence of an obstacle with the same dimension of the duct width disturbs the flow and
changes the flux across this duct.

Due to the broad applicability of this problem, many approaches and techniques have been used to simulate the
interaction between the fluid and particles. Some of them belong to a group of pseudo-particle methods that form a class of
multi-scale simulation approaches in computational fluid mechanics. Among them, we have lattice-based cellular automata
methods (lattice gas, lattice Boltzmann) [8] and off-lattice approaches (dissipative particle dynamics, direct simulation
Monte Carlo, multiple particle collisions) [9–12]. Alternatively, one may solve the Navier–Stokes equation directly finding
the pressure and velocity fields [13,14] and then introduces particles that can interact or not with the fluid.

The interaction of a particle with the fluid flow within a channel has several characteristic lengths which are related to
the particle and channel geometrical dimensions [15]. A straightforward way to approach this problem, consists basically
in solving the Navier–Stokes equation in the presence of particles for a set of boundary conditions, calculating the velocity
and the pressure fields. Subsequently, the particles are moved by a very small distance, according to the drag forces exerted
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Fig. 1. Schematic view of the problem investigated here. Basically, the geometry consists of a box with length Lx and width Ly . The channel has a length
l and a tunable width w = αr , where α is a dimensionless parameter. The circle obstacle with radius r is located in front of the channel with its center
distant D = 2rλ from the entrance, where λ is a dimensionless parameter.

on them, the velocity and pressure fields are calculated again, and so on. Using this numerical calculation sequence, we can
determine how each particle interferes in the flow around its surface and force acting on it. Furthermore, we can apply this
idea to study a traveling particle transported by a fluid approaching to a narrow channel.

The main purpose of this paper is to study how the flow disturbance caused by a solid obstacle inside a duct influences
the flux through a channel placed downwind the obstacle as a function of the distance between the obstacle and the channel
entrance. We measure the flux φ through a channel placed a distance λ downwind the obstacle. For this, we numerically
solve the Navier–Stokes equation to compute the flux φ and the drag force over the obstacle as a function of λ. Our results
indicate the occurrence of distinct flow regimes for different values of λ, with the flux φ decaying as a power-law in the limit
λ → 0. Finally, the presence of a minimum in the drag force over the particle is also observed for a given λ value.

2. Model

Westudy the system shown in Fig. 1 that consists of a two-dimensional ductwith length Lx = 100mandwidth Ly = 20m,
insidewhich there is a smaller channel of length l andwidthwwith its longitudinal axis aligned along the axis of the enclosing
duct. A circular solid obstacle with radius r = 1 m is placed at a distance D upwind the entrance of the smaller channel with
its center on the duct’s axis. The various geometric configurations we use are described in terms of two non-dimensional
parameters, namely, λ = D/(2r) and α = w/r , with α > 0.5 for all simulations presented. In order to avoid border effect,
the width of the duct Ly is at least one order of magnitude larger than the channel width w. We impose no-slip boundary
conditions along the entire solid–fluid interface. At the inlet (x = 0), we impose the conditions, ux(0, y) = V and uy(0, y) = 0,
while the boundary condition at the outlet (x = Ly) is imposed to be∇p = 0. The Reynolds number is defined as Re = ρVr/µ,
where ρ and µ are, respectively, the density and the viscosity of the fluid, and V is the velocity at the inlet section. We take
ρ = 1 kg/m3 and µ = 1 kg/(m s).

We use the CFD software Fluent (Ansys, Inc.) [16] to numerically compute the steady-state solution of the two-
dimensional flow of an incompressible Newtonian fluid in terms of the Navier–Stokes and continuity equations,

ρu⃗ · ∇u⃗ = −∇p + µ∇
2u⃗ (1)

∇ · u⃗ = 0 (2)

where u⃗ is the velocity and p the pressure.
In Fig. 2 we show a typical velocity field obtained from numerical simulations in a regime of low Reynolds number,

Re = 0.356, for three different values of λ and fixed width w. The colors ranging from blue to red correspond to low and
high velocity magnitudes, respectively. The contour plot of the velocity magnitude clearly reveals that, as the obstacle is
approaching the channel entrance, the wake region of the obstacle, shown as the dark region behind it, reaches the channel
and the obstacle begin to play a more significant role on the flow towards the channel.

3. Results and discussion

In order to quantify the obstacle influence on the channel flux, we calculate the flux φ through the channel, as the
integral of the velocity along the linear distance orthogonal to the flow times the length of this line. In our analysis we
have normalized the flux φ by the total flux φ0 calculated as the same of the flux φ but now considering the entrance of the
duct. In that case, φ0 is the total flux getting inside the duct while φ is the fraction of this flux that goes inside the inner
channel. Fig. 3 shows a log-linear plot of the normalized flux (φ/φ0) as a function of λ, for five different values of w. Three
distinct regimes of φ/φ0 can be clearly identified. In the limit of large λ (λ ≥ 10), the flux φ tends to a saturation value φs
which depends on the width w as a power law, φs ∝ w2.66, as the collapse of all curves in this region indicates (see the inset
of Fig. 3).
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