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h i g h l i g h t s

• Time-convolutionless mode-coupling theory is used to describe the dynamics near the glass transition.
• Renormalized simplified model is proposed.
• Renormalized recursion equation is solved for fragile liquids and strong liquids.
• A novel difference between the dynamics of fragile liquids and that of strong liquids is discussed.
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a b s t r a c t

The renormalized simplified model is proposed to investigate indirectly how the static
structure factor plays an important role in renormalizing a quadratic nonlinear term in the
ideal mode-coupling memory function near the glass transition. The renormalized simpli-
fied recursion equation is then derived based on the time-convolutionless mode-coupling
theory (TMCT) proposed recently by the present author. This phenomenological approach
is successfully applied to check from a unified point of view how strong liquids are differ-
ent from fragile liquids. The simulation results for those two types of liquids are analyzed
consistently by the numerical solutions of the recursion equation. Then, the control param-
eter dependence of the renormalized nonlinear exponent in both types of liquids is fully
investigated. Thus, it is shown that there exists a novel difference between the universal
behavior in strong liquids and that in fragile liquids not only for their transport coefficients
but also for their dynamics.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Study of glass transition must be one of last pioneering works left in condensed matter physics [1–4]. Despite decades
of many researches on various glass-forming materials, the mechanism of the glass transition is not fully elucidated
theoretically yet. The main purpose of the present paper is to propose a phenomenological theory to understand the glass
transition phenomena from a unified point of view. This is done by introducing a renormalized simplified model based
on the time-convolutionless mode-coupling theory (TMCT) proposed recently by the present author [5]. Then, it is shown
indirectly how the static structure factor plays an important role in renormalizing the quadratic nonlinear term contained
in the ideal mode-couplingmemory function [6]. Thus, this approach is successfully applied to investigate a novel difference
between two types of glass-forming liquids classified by Angell [7], strong liquids such as SiO2 and GeO2 and fragile liquids
such as Toluene and Salol, not only for their transport coefficients but also for their dynamics near the glass transition.
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In order to study the dynamics of supercooled liquids, we have recently proposed the time-convolutionless mode-
coupling theory (TMCT) and derived the TMCT equation for the intermediate scattering function fα(q, t) [5], where α = c
for collective case and α = s for self case. Starting from the TMCT equation and introducing the cumulant function Kα(q, t)
by Kα(q, t) = − ln(fα(q, t)), we have then derived the second order differential equation for Kα(q, t) [8]

∂2Kα(q, t)
∂t2

=
q2v2th
Sα(q)

− γα
∂Kα(q, t)
∂t

−

 t

0
1ϕα(q, t − s)

∂Kα(q, s)
∂s

ds (1)

with the ideal MCT nonlinear memory function 1ϕα(q, t) [6], where γα is a positive constant, and vth an average thermal
velocity. Here Sc(q) = S(q) and Ss(q) = 1, where S(q) is a static structure factor. This equation has the same form as that
of the ideal MCT equation for fα(q, t) [6], except the first term. As discussed in the previous papers [8,9], therefore, all the
mathematical predictions proposed in the idealMCT equation [6,10] can be directly applicable to the ideal TMCT Eq. (1). One
of such examples is an existence of a critical point. In fact, similarly to MCT, there exists an ergodic to non-ergodic transition
at a critical point, above which fα(q, t) reduces to the following non-zero solution fα(q) for a long time:

fα(q) = exp

−

1
Fα(q)


, (2)

where Fα(q) the long-time limit of the memory function [5,8]. Since this solution fα(q) is different from that of MCT, the
critical point is expected to be quite different from that of MCT. In the previous paper [8], this has been first investigated
clearly by employing the simplifiedmodel proposed in the original MCT paper [6]. Then, in Ref. [11] it has been also checked
directly by solving Eq. (1) numerically for the Percus–Yevick model [12]. Thus, the critical point of TMCT has been shown to
coincide with the singular point of the master curve for the diffusion coefficient [13,14]. As is shown later, this relation is in
general true even for other systems.

The memory function1ϕα(q, t) contains the static structure factors. Once they are known, therefore, it is easy to solve
Eq. (1) numerically. Thus, one can compare the numerical solutions with the simulation results and the experimental
data one by one. Even though those solutions are obtained numerically, however, it is still not clear how the wavevector
dependence of the static structure factors plays an important role in the dynamics of supercooled liquids. In the present
paper, therefore, we investigate this from a viewpoint based on the simplified model. Under the original simplified model
proposed in MCT, the memory functions can be written as [8]

1ϕα(qm, t) = Bα fc(qm, t)fα(qm, t), (3)

Fα(q) = κα fc(qm)fα(qm), (4)

where κα is a coupling parameter, Bα(=q2mv
2
thκα/Sα(qm)) a dynamic coupling parameter, and qm a peak position of S(q). In

the previous paper [8], we have first transformed Eq. (1) into the recursion equation for Kα(qm, t) and solved it by iteration
under the initial conditions obtained from the simulation results [15] for the binary mixtures with the Stillinger–Weber
potential [16]. Thus, we have shown that the simplified model can describe the simulation results very well only in a liquid
state but not in a supercooled state at all. In this sense, TMCT based on the simplified model is just a mean-field theory to
describe the dynamics in a liquid state. Thus, the integration of the static structure factors over wavevector in the memory
function is turned out to be indispensable to describe the dynamics in a supercooled state. In order to check how such an
integration affects the dynamics, we assume that the quadratic nonlinear terms given in Eqs. (3) and (4) can be replaced by
the renormalized nonlinear terms as

1ϕα(qm, t) = Bα[fc(qm, t)fα(qm, t)]1+wα , (5)

Fα(q) = κα[fc(qm)fα(qm)]1+wα , (6)

respectively, where wα is a renormalized nonlinear exponent to be determined. Here wα > 0 in a supercooled state and a
glass state, whilewα = 0 in a liquid state. The renormalized exponentwα is then obtained by comparing the numerical solu-
tions of the recursion equation for Kα(qm, t)with the simulation results. In fact, by adjusting the value ofwα appropriately,
the numerical solutions are shown to agree with the simulation results well within error.

In the previous papers [13,14,18–22], we have proposed the master curve for the diffusion coefficient and shown how
strong liquids (S) are different from fragile liquids (F) not only quantitatively but also qualitatively. Thus, we have found
the renormalized exponent εi to distinguish both liquids from each other, where i = F for (F) and i = S for (S). In
fact, εi is given by εF ≃ 4/3 and εS ≃ 5/3. We note here that the renormalized exponent εi depends only on types of
liquids but not on the details of materials. Although the difference between the exponents in both liquids is small, this
suggests that there exist qualitatively different mechanisms between (F) and (S). In fact, in Ref. [18], we have shown that
the dynamics of self-diffusion process in (S) is quite different from that in (F) by analyzing the simulation results. In this
paper, we apply the present approach to investigate such a difference consistently and to check whether a universality on
εi also holds on wα or not. In Fig. 1, the exponent wc is plotted versus scaled temperature Tc/T for both types of liquids,
where Tc is a singular temperature of the master curve. As a typical example of (F), we here take the simulation results
[15,18] obtained for the Stillinger–Weber binary mixtures, while for (S) we take the simulation results [18,22] obtained
for SiO2 with the Nakano–Vashishta potential [17]. Thus, the temperature dependence of wc in (S) is shown to be quite
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