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h i g h l i g h t s

• Two kinds of witnesses of non-Markovianity have been calculated and compared.
• Witnesses based on the completely positive and local completely positive maps, are equivalent respectively.
• Non-Markovianity decreases with the increase of environmental noises, but is not affected by the choice of the initial states.
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a b s t r a c t

In this paper, the evolutions of two kinds of witnesses of the non-Markovianity and their
rates of changes with time are investigated and compared. Four definitions, the trace dis-
tance, fidelity, quantum relative entropy, and quantum Fisher information are used for the
first kind of witnesses which are based on the completely positive maps (CPM). Three def-
initions, the quantum entanglement, quantum mutual information, and quantum discord
are used for the second kind of witnesses, and they are based on the local completely pos-
itive maps (LCPM). An open two-level quantum systemmodel and a numerically quantum
dissipative dynamics method, hierarchy equation of motion (HEM) are used in the investi-
gations. It is shown that the evolutions of the witnesses and their rates of the changes cal-
culated with different definitions clearly show the characteristics of the non-Markovianity
and they are in agreement with each other.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Markovianity, named after the Russian mathematician A. Markov [1], is a type of classical process that does not have
memory of the past. It has beenwidely investigated inmany disciplines in the past few decades [2,3]. For a quantum system,
it is difficult in general to define the quantum Markovian process. However, in the sense of divisibility, if its dynamical
evolution can be described by some family of trace-preserving linear maps, namely, ρ(t1) = ε(t1, t0)ρ(t0), and, for every t2
and t1, ε(t2, t1) is a complete positive map and fulfills the composition law as

ε(t3, t1) = ε(t3, t2)ε(t2, t1), t3 > t2 > t1, (1)
it is Markovian [1]. Thus, some dynamical approaches, for example, the Redfield and Lindblad forms of themaster equations,
describe this kind of process. It is easy to discern from Eq. (1) that the evolution of a closed quantum system is Markovian.
However, the practical dynamics of an open quantum system is essentially non-Markovian.

For the Markovian processes, the correlation time between the system and environment is considered to be infinitesi-
mally small so that the memory effects of the dynamical map can be neglected, so it will lead to a monotonic flow of the
information from system to environment. In contrast, for non-Markovian processes, thememory effects of the environment
cannot be ignored, so it always results in a rise to the back flow of information from environment to the system [4].
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Theoretically, many non-Markovian dynamical approaches have been developed in recent years [5–10]. To quantify
the non-Markovianity, some so-called measures of the non-Markovianity, such as geometric measure, trace norm, decay
rate measure, and hierarchical k-divisibility degree, have been introduced. The main drawback of quantifying the non-
Markovianity with these measures is the difficulty in optimizing the process, which makes these measures rather
impractical. It ismuch easier tomeasure thenon-Markovianity viawitnesses. Awitness of thenon-Markovianity is a quantity
that vanishes for all Markovian dynamics, but it may also vanish for some non-Markovian ones. Thus, when a witness of the
non-Markovianity gives a nonzero value, we are sure that the dynamics is non-Markovian. Consequently, investigations
of the non-Markovianity by using witnesses become much easier than by using the measures, because we do not have to
optimize the processes. The witnesses of the non-Markovianity presented in the literature are classified into two kinds
according to two guiding principles. One kind of the witnesses is based on monotonic quantities under completely positive
maps (CPM), and the other based onmonotonic quantities under local completely positivemaps (LCPM). The former includes
trace distance, fidelity, quantum relative entropy, quantum Fisher information, capacity measure, Bloch volume measure
etc., and the latter includes entanglement, quantum mutual information, quantum discord and so on.

It is interested that what are the differences between these witnesses, or whether they are equivalent in the descriptions
of the non-Markovianity. In this paper, we shall calculate somewitnesses by using several different definitions and the same
model. The quantum dissipative dynamical method, the hierarchy equation of motion (HEM) method [11], will be used. It
will be shown that the witnesses calculated from the different definitions belonging to the two kinds of maps are exactly
equivalent respectively for the descriptions of non-Markovianity of the investigated model.

2. Dynamical method

The Hamiltonian of an open quantum system is given by

H = Hs +
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where σz is a Pauli matrix, Hs represents the Hamiltonian of the system, and the environment described with the harmonic
oscillators are coupled to the modes of the system. The dynamics of the system can be described with quantum master
equations (QMEs) in Markovian approximation. This kind of equations, for example the Redfield and Lindblad forms are in
general only suitable for weak system–bath interactions as memory effects of the bath are neglected. A direction for solving
the quantum dissipative dynamics including non-Markovian effects is based on the path integral formalism [12,13]. Marki
and co-workers have developed an exact numerical dynamics approach — quasi-adiabatic propagator path integral (QUAPI)
method [14,5]. This is an efficient way of includingmemory effects via tensor products of elementmemory kernels. A differ-
ent approach was proposed by Tanimura and co-workers, who introduced a hierarchical treatment of non-Markovian dy-
namics, inwhich the primary density operator is coupled to auxiliary density operators, describing the effects of successively
higher order system–bath interaction [15,16]. These two kinds of non-Markovian dynamical methods can include dynami-
cal memory effects, and are extensively used in the investigations of decoherence, disentanglement, energy transformation,
and spectral analysis in quantum systems. Many other methods have also been proposed and used in last years [17,18].
In the following, we shall use the hierarchy equation of motion (HEM) to investigate the witnesses of non-Markovianity.

If we set the environmental density function with the Drude–Lorentz spectral form [19,11]:
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πω0

γ 2ω
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Here, η is related to the system–bath coupling strength, while γ represents the width of the spectral distribution of the bath
modes and it is related to the correlation time of the noise induced by the bath, tc = 1/γ . In this study, we use the following
hierarchy of equations in operator form [11,20]:
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Here,Θ(t),Ψk(t) andΞ(t) are the operator forms of
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