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h i g h l i g h t s

• We use Information Theory for the characterization of electric load.
• With our characterization was identified different regimes and behaviors in the electric load.
• We observe that types of appliances have characteristic footprints that form clusters in the CCE plane.
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a b s t r a c t

This paper presents a study of the electric load behavior based on the Causality
Complexity–Entropy Plane.Weuse a public data set, namelyREDD, which contains detailed
power usage information from several domestic appliances. In our characterization, we
use the available power data of the circuit/devices of all houses. The Bandt–Pompe
methodology combinedwith the Causality Complexity–Entropy Planewas used to identify
and characterize regimes and behaviors over these data. The results showed that this
characterization provides a useful insight into the underlying dynamics that govern the
electric load.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction 1

Traditionally, power grids are used to carry power from a few central generators to a large number of users or customers. 2

In contrast, Smart Grids use two-way flows of electricity and information to create an automated and distributed advanced 3

energy delivery network [1]. Smart Grids enable the development of new applications related to advanced information 4

metering, monitoring, and management, for instance, Non-Intrusive Load Monitoring (NILM) [2,3]. 5
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Zoha et al. [2] state that NILM requires disaggregating electrical loads by examining only appliance specific power con-1

sumption signatureswithin the aggregated load data. The data is acquired from themain electrical panel outside the building2

or the residence, hence it is considered to be non-intrusive as themethod does not require any equipment installation inside3

the customer’s property. The goal is to breakdown the whole-house building data into its major constituents.4

A key aspect to explore in NILM applications is the adequate characterization of electrical energy consumption of5

domestic appliances. To tackle this issue we present a characterization of the behavior of electrical devices by using6

quantifiers stemming from Information Theory. The characterization is performed in two stages. Firstly, the original time7

series of the electrical consumption is transformed into a histogram with a nonparametric transformation that retains8

time causal information: the Bandt–Pompe methodology [4]. Secondly, this histogram is mapped onto the Causality9

Complexity–Entropy Plane (CCEP) [5], and its location is shown to serve as a characterization of a number of typical regimes.10

This plane is a compact manifold spanning values of the normalized Shannon entropy H and the statistical complexity C.11

According to the findings obtained by Rosso et al. [5], chaotic maps have intermediate H values, while C stays close12

to the maximum possible complexity value [6]. For regular processes, entropy and complexity have small values, close to13

zero. Finally, totally uncorrelated stochastic processes are located close to the (1, 0) point. It has also been found that 1/f k14

correlated stochastic processes with 1 ≤ k ≤ 3 are characterized by intermediate permutation entropy and intermediate15

statistical complexity values [5]. Additionally, they found that fractional Gaussian noise (fGn) fingerprints lie in the same16

region than 0 ≤ k < 1 noise. Fractional Brownian motion (fBm) sweeps the region equivalent to 1 ≤ k ≤ 3 noise, with two17

important particular cases: antipersistent fBm (1 ≤ k < 2), and persistent fBm (2 ≤ k ≤ 3). Note that these processes lie in18

different positions in the CCEP and, thus, can be characterized by two watersheds: those below and above what looks like19

a division line. Our assumption is that using a similar methodology we would be able to characterize the dynamic behavior20

of appliances.21

We conduct an exploratory study to test our methodology with time series from the REDD (Reference Energy22

Disaggregation Data Set) data set, which describes the power usage information of several domestic appliances [7]. The23

characterization herein performed uses the available power data of circuits/devices collected from five houses. We analyze24

devices that can be classified into two different modes of operation: (i) devices that are continuously switched on, such as25

refrigerators, and (ii) devices that can be switched on or off due to human intervention or any kind of automation, such as26

oven, lamp and washing machines. Although the information about the intervals that devices are switched on or off can be27

used to characterize the device, in this work we are mostly interested in the dynamics of the power consumption behavior28

only when a device is switched on. Thus, we pre-processed the data to rule out all zero readings to capture this situation.29

This work is organized as following: Section 2 presents the related work. Section 3 explains the Information Theory30

quantifiers. Section 4 discusses the energy information data set. Section 5 presents the obtained results. Finally, Section 631

concludes the manuscript.32

2. Related work33

The characterization of electrical energy consumption of domestic appliances in NILM applications is largely34

underexplored. Among the problems tackled in the literature, Refs. [8–10] discuss techniques for event detection. Rather35

than focusing on such problem, other approaches treat the issue of energy disaggregation, i.e., they estimate the energy36

consumed by devices operating in different ranges of power consumption [11–13]. These works are based on finding37

correspondences between known and observed patterns.38

A number of tools have been used to deal with the NILM problem, event detection or complete disaggregation, among39

them: hidden Markov models [7,12]; fuzzy systems [13,14]; k-nearest neighbors [15]; evolutionary algorithms [16,17];40

k-means [11]; and support vector machines [18]. These works analyze the data for specific applications in mind, whereas41

in this work we propose an application-free approach that uses a tool based on information-theoretic descriptors that have42

not been employed previously for this problem.43

Several data sets are available, among them: Reference Energy Disaggregation Data Set (REDD) [7]; Building-Level44

fUlly-labeled data set for Electricity Disaggregation (BLUED) [19]; UK recording Domestic Appliance-Level Electricity (UK-45

DALE) [20]; Smart* [20]; and the Berkeley campus energy portal (Openbms) [21]. Our testbed is the REDD data base46

because its low sampling frequency turns the characterization problem more challenging and realistic. This kind of data47

is the one produced by off-shelf equipment and, thus, contributes for reproducibility of the study both experimentally and48

theoretically.49

Finally, several works investigate the usage of information theory quantifiers to characterize the dynamics underlying50

time series, for instance, the effects of streamflow dynamics [22], unsupervised edge map scoring [23], and stochastic51

resonance in a bistable system [24]. Additionally, theoretical advances in statistical complexity measure are discussed in52

Refs. [25–27].53

3. Time series and information theory quantifiers54

Bandt and Pompe [4] introduced a method to associate a probability distribution from a time series taking into account55

the time causality of the process. Given a time series X(t) = {xt : t = 1, . . . ,M}, an embedding dimension D ≥ 2 (D ∈ N),56
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