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h i g h l i g h t s

• Perpendicular constant force can induce the rectification of chiral active particles.
• The transport direction can be reversed under appropriate conditions.
• Active particles with different chiralities can be effectively separated.
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a b s t r a c t

Transport of chiral active particles in a symmetric periodic potential is investigated in
the presence of a constant force. It is found that due to chirality of active particles the
transversal constant force can break the symmetry of the system and induce a longitudinal
net current. There exists an optimal constant force at which the rectification is maximal.
Remarkably, longitudinal current reversals can occur by suitably tailoring the transversal
constant force. Therefore, particles with different chiralities move to different directions
and can be effectively separated.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The study of active particles has attracted wide attention and shown lots of interesting new physics [1–9]. Active
particles ranging from bacteria [10–15] to artificial microswimmers [16–19] can perform active Brownian motion by
extracting energy from an external source. Artificial microswimmers are driven by self-phoretic forces, which may be
produced from self-diffusiophoresis by catalyzing a chemical reaction [20–22] or self-thermophoresis by inhomogeneous
light absorption [23,24]. Under certain conditions, active particles could exhibit peculiar collective behaviors [25–30] and
spontaneous rectification transport [31–35].

Compared with simple active particles, chiral active particles perform circular motion in two dimensions and helicoidal
motion in three dimensions due to the self-propulsion force being not aligning with the propulsion direction [36]. For an
active particle with a specific chirality, the particle is asymmetric and shows completely different behaviors with non-chiral
particle in the presence of asymmetric conditions. For example, a transversal driving force could induce the longitudinal
movement of chiral particles [36] and be applied to separate chiral particles [37]. The rectification transport of chiral
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Fig. 1. Sketch of the two-dimensional periodic potential U(r⃗). The red and blue balls demote clockwise and counterclockwise particles, respectively. The
particles are driven by a constant force fy pointing to the +y direction. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

particles could also occur autonomously in transversal asymmetric channels [38,39]. In addition, chiral particles could be
captured and sorted by chiral flowers [40] or rotary obstacles [41]. Recently, Nourhani and coworkers [42,43] investigated
the transport of chiral self-propellers in a soft periodic two-dimensional potential, and utilized the potential asymmetry
to separate and guide these particles. Based on the work [43], we extend this study to the symmetric potential with a
transversal constant force. It is found that the transversal constant force can be used to control longitudinal current and
reverse the current direction. Our simulation results suggest that one can utilize the method in this paper to separate active
particles with different chiralities.

2. Model

We consider chiral active particles moving in a two-dimensional periodic symmetric potential as shown in Fig. 1. In the
absence of any external force, a chiral particle moves along circle trajectory and the radius of the circle R = v0/Ω [31]. v0 is
the self-propulsion speed, and Ω is angular velocity which determines the chirality of particles. We define particles as the
counterclockwise particles for positiveΩ and the clockwise particles for negativeΩ . In the presence of a constant force, the
chiral particlemaymove along an ellipse trajectory in a confined structure. In Fig. 1, the transversal constant force fy pointing
to the +y direction produces the asymmetry of the present system. The counterclockwise (blue) particle is more likely to
escape from the potential in the upper right corner. Thus one may predict that active particles with different chiralities
move along the corresponding trajectories, i.e., the red and blue balls move along red and blue lines in Fig. 1, respectively.
When the potential is a superposition of two standing waves U(r⃗) = U0

2
i=1 cos(k⃗i · r⃗) with U0 being the strength of the

potential, active particles with different chiralities may exhibit different transport behaviors. Here we only consider unit
wave vector k⃗i and the position r⃗ = (x, y). In the overdamped limit, the dynamics of chiral active particles can be described
by the following Langevin equations,

dx
dt

= v0 cos θ + µFx +


2D0ξx(t), (1)

dy
dt

= v0 sin θ + µ(Fy + fy) +


2D0ξy(t), (2)

dθ
dt

= Ω +


2Dθξθ (t), (3)

where Fx = −∂U/∂x, Fy = −∂U/∂y, and µ is the mobility. The angle θ denotes the direction of v0 with respect to the x
axis.D0 andDθ represent the translational diffusion and rotational diffusion, respectively. ξx(t), ξy(t), and ξθ (t)model white
Gaussian noise with zero mean and obey ⟨ξi(t)ξj(t ′)⟩ = δijδ(t − t ′), i, j = x, y, and ⟨ξθ (t)ξθ (t ′)⟩ = δ(t − t ′).

For convenience, we introduce the dimensionless variables and choose the characteristic length scale 1, energy scale U0,
and time scale τ = 1/µU0. Therefore, Eqs. (1), (2), and (3) can be rewritten in dimensionless form,

dx̃
dt̃

= ṽ0 cos θ + F̃x̃ +


2D̃0ξ̃x̃(t̃), (4)

dỹ
dt̃

= ṽ0 sin θ + F̃ỹ + f̃ỹ +


2D̃0ξ̃ỹ(t̃), (5)

dθ
dt̃

= Ω̃ +


2D̃θ ξ̃θ (t̃), (6)

where x̃ = x, ỹ = y, and t̃ = t/τ . The rescaled parameters are ṽ0 = v0/µU0, Ω̃ = Ω/µU0, D̃0 = D0/µU0, D̃θ = Dθ/µU0,
f̃ỹ = fy/U0, and Ũ =

2
i=1 cos(k⃗i · r̃). In the following, we will use only the dimensionless variables and omit the hat for all
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