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h i g h l i g h t s

• Stationary state of random walk on an aperiodically disordered lattice is investigated.
• Size dependence of velocity and multifractal spectrum of the stationary distribution are examined.
• With a finite bias in the infinite size limit, the stationary state is always extended.
• At a certain finite size scaling behavior changes from a singular or localized to an extended state.
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a b s t r a c t

Stationary states of random walks with finite induced drift velocity on one-dimensional
lattices with aperiodic disorder are investigated by scaling analysis. Three aperiodic
sequences, the Thue–Morse (TM), the paperfolding (PF), and the Rudin–Shapiro (RS)
sequences, are used to construct the aperiodic disorder. These are binary sequences,
composed of two symbols A and B, and the ratio of the number of As to that of Bs converges
to unity in the infinite sequence length limit, but their effects on diffusional behavior
are different. For the TM model, the stationary distribution is extended, as in the case
without current, and the drift velocity is independent of the system size. For the PF model
and the RS model, as the system size increases, the hierarchical and fractal structure and
the localized structure, respectively, are broken by a finite current and changed to an
extended distribution if the system size becomes larger than a certain threshold value.
Correspondingly, the drift velocity is saturated in a large system while in a small system it
decreases as the system size increases.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A random walk on a lattice, or more generally on a complex network, is a simple stochastic process which describes a
classical transport phenomenon in a real space or a step-by-step state change in an abstract state space. Due to and in spite of
the simplicity of the process, various and nontrivial properties have been found and analyzed in detail, bothmathematically
and physically [1,2].

In the presence of disorder, i.e., where the hop probability or rate from one site to another is not uniform, the behavior of
the random walk is strongly modified, especially in lower dimensions, not only quantitatively but also qualitatively. When
the disorder is random and uncorrelated, variousmethods have been developed for analysis. Especially, frommethods based
on renormalization group, many results, some of which are exact, have been obtained [3–6]. One of the most remarkable
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results is so-called ultraslow diffusion, where the diffusion is strongly suppressed by disorder, and the averaged mean-
square displacement grows extremely slowly, i.e. on a log-time scale [7,8]. Correspondingly, the stationary state on a finite
lattice is strongly localized.

Systems with aperiodic disorder are also interesting for investigation. An aperiodic disorder is generated by a certain
set of deterministic rules but does not have any periodicity. It is this point that distinguishes aperiodic from random
uncorrelated disorder. Moreover, aperiodic disorder is considered to be intermediate between uniformity or periodicity and
random disorder. Hence, the study of systems with aperiodic disorder is probably a good first step towards understanding
systems with more general correlated disorder. Generally, it is difficult to construct an aperiodic disorder with desirable
characteristics. Fortunately, for one-dimensional lattice systems various aperiodic disorders can be easily constructed
with the help of the aperiodic sequences which have been investigated mathematically. Note that in addition to the
theoretical and mathematical interest, systems with aperiodic disorder have been fabricated artificially and investigated
experimentally [9]. As expected, some results that are unique for aperiodically disordered systems have been obtained. One
of themost remarkable is the appearance of anomalous diffusion, where themean-square displacement grows slowly— less
than linearly with time [10]. Correspondingly, a singular stationary probability distribution with a remarkable hierarchical
structure appears [11].

If the hop rates do not satisfy a certain condition (see Eq. (7)), a finite drift velocity is induced, at least in a finite system,
and in the stationary state a finite current flows through the lattice. As is well known, a finite current forces the stationary
distribution to be extended. Therefore, it is an interesting problem to investigate how the stationary distribution without
current will be changed by the presence of a finite current — particularly when the distribution is localized or singular.
In the present paper we use scaling analysis to cope with this problem for the cases of lattices with aperiodic disorder.
As in our previous study [11], we consider the aperiodic disorders constructed by the Thue–Morse (TM), paperfolding
(PF), and Rudin–Shapiro (RS) sequences. These three aperiodic sequences have several common properties: (i) They are
binary sequences, which are composed of two types of symbols, A and B. (ii) They are constructed systematically from
initial sequences and by iteration of specific substitution rules. (iii) The ratio of the number of As to that of Bs converges to
unity in the infinite sequence length limit. Nevertheless, these aperiodic disorders have different effects on the diffusional
behavior [10] and correspondingly on the stationary probability distribution [11], since they have difference wandering
exponents (see Section 2.2).

We focus on the dependence of the drift velocity and the localization structure of the stationary probability distribution
on the system size. In order to characterize the latter, we use multifractal analysis [12], as in our previous study [11].
This approach has been applied to characterize the scaling structure of distributions in various systems, including those
of the energy dissipation in turbulence [13,14], the sidebranch structure of dendrites [15], and the quantum localization
problem [16], where the localization property of the wavefunction is studied.

The organization of the rest of this paper is as follows: In Section 2, we formulate our model andmethod for analysis. We
describe our one-dimensional randomwalk, give the expressions of the observables, and introduce the aperiodic sequences
from which the disorder is constructed. Then we describe the method of the multifractal analysis for the distribution on a
one-dimensional support, the criterion for localization and the finite-size effect. In Section 3, we present our results and a
discussion. Section 4 is dedicated to our conclusion and future outlook.

2. Model and method

2.1. Random walk on one-dimensional disordered lattice

Let us consider a randomwalk on a one-dimensional lattice with only nearest neighbor hopping allowed. This process is
described by the master equation:

∂pj(t)
∂t

= wj−1,jpj−1(t) + wj+1,jpj+1(t) − (wj,j−1 + wj,j+1)pj(t), (1)

where pj(t) is the probability for the particle to be on site j at time t and wj,k denotes the hop rate for the particle from site j
to k. We impose the periodic boundary condition pj+L ≡ pj andwj+L,k+L = wj,k, where L denotes the system size, the number
of sites on the lattice. Interestingly this master equation is known to be equivalent to the transverse-field Ising model [10].

We construct the disorder according to an aperiodic binary sequence, S, composed of two types of symbols, A and B. For
example, let us take S = ABAABAABAB · · · . For this sequence, the hop rates are assigned as follows:

wj,j+1 = 1, for all j, (2)

and

wj+1,j =


a, the jth symbol of S is A,
b, the jth symbol of S is B. (3)

At least as far as we are concerned with the stationary state, the assignment does not lose generality, since the quantities
related to the stationary state, the probability distribution and the drift velocity, are expressed as a function of the ratio
wj,j+1/wj+1,j [8].
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