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a  b  s  t  r  a  c  t

This  paper  reports  on a novel  piezoresistive  high-g  accelerometer  design,  that  partially  overcomes  a
common  drawback  of  shock  sensor  concepts,  namely  that  their  bandwidth,  i.e. natural  frequency,  can-
not  be  increased  without  sacrificing  sensitivity.  Its figure  of merit  (sensitivity  multiplied  by frequency
squared)  is  about  5 × 106 m−1. This  is  one  order  of  magnitude  higher  than  in  existing  designs  in  the  lit-
erature  or  currently  on  the  market.  The  increase  is  made  possible  by a design  approach  that  focuses  on
displacements  rather  than  stresses  and  the  utilization  of a spring–mass  system  related  parameter  called
the “geometrical  constant”.  The  concept  allows  finding  initial  design  geometries,  which  can  be  used  for
further  optimization,  and  may  be  applied  to sensors  other  than  accelerometers.  The  accelerometer  design
presented in  this  paper  is  implemented  as a MEMS  device  that features  self-supporting  piezoresistive
elements.  The  first  specimens  have been  characterized  for shocks  of  up  to  75,000  × g  in  Hopkinson  bar
experiments  and  have  sensitivities  ranging  from  0.035  to 0.23  �V/Vexc./g and  natural  frequencies  ranging
from  2.7  to  3.7  MHz.  Also,  measurement  data  from  a 200,000  × g  survivability  check  is presented.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

When designing accelerometers, bandwidth and sensitivity are
often chosen as the defining performance characteristics and are
therefore prioritized for optimization. However, since these two
properties are interdependent, it is not possible to maximize both at
the same time, making this optimization a non-trivial task. An early
analysis has for example been conducted by Roylance and Angell
[1] and Seidel and Csepregi [2] for capacitive and piezoresistive
accelerometers. The interdependence is known to apply to micro-
machined accelerometers in general [3],  but is especially important
to high-g and shock accelerometers, which usually have rigorous
requirements regarding their bandwidth and sensitivity [4,5]. The
two properties are key to surviving and precisely measuring the
rapidly changing signals that occur during shock events.

Two main aspects can be examined in order to optimize
sensor performance: the measurement method and the accelerom-
eter geometry. Both have been analyzed extensively. The former
includes the development of new measurement methods, such
as magnetic tunnel junctions [6] or silicon nanowires [7], in
order to obtain very high gauge factors. The latter ranges from
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determining parameter sensitivities [8] and reducing package
effects [9] to finding optimal dimensions [2,10] and – of course –
testing different types of geometrical designs [11,12].

In this paper, a piezoresistive high-g accelerometer with very
high sensitivity and bandwidth is presented that is based on an
unconventional spring–mass geometry. The first part discusses
the concept of the geometrical constant ‘C’, which provides jus-
tification of said spring–mass system. It describes the mentioned
frequency–sensitivity interdependence and gives insight into how
accelerometer performance can be affected by choosing different
initial spring–mass systems. The concept is extended by a displace-
ment focused analysis of the most important design parameters of
piezoresistive accelerometers and the first design attempt based
upon this. Numerical methods are used to make a first estimate
of effects not considered by the analysis and shortcomings of the
approach are discussed. Initial experimental results with the first
specimens are shown. Two  commercial high-g accelerometers, the
Endevco 7270 [13] and the PCB 3501 [14,15],  are used as references
and a performance comparison is conducted between the commer-
cial sensors, literature designs and the new approach. The scope of
generalizing the results of the approach will be discussed briefly.

2. Basic considerations

Most accelerometers are basically designed as linear
spring–mass systems that are attached to a unit under test,
i.e. an accelerated body, and hence experience a displacement of
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Fig. 1. (a) Typical design concept for a piezoresistive accelerometer with the strain
gauge embedded into a flexural element. (b) Design concept with increased sen-
sitivity due to self-supported strain gauges placed further away from the neutral
axis.

their mass due to inertial forces [3].  The displacement can then be
detected by various means,1 resulting in the measurement signal.
Sensitivity, which is defined as the measurement signal (usually
a voltage) per unit acceleration, and bandwidth, which is given
by the mechanical resonant frequency of the spring–mass system,
are often prioritized in the design process. The two properties are
related to each other by the following well-known equation [3,16]:

Sω2 = �sensor (1)

Here ω denotes the (lowest) resonant frequency of the spring–mass
system, S denotes sensitivity and �sensor is a design constant that
depends on the measurement method and the geometry of the
system. Obviously, increasing sensitivity and bandwidth simul-
taneously is only possible by maximizing �sensor, making this
constant a figure of merit. It has been used as an optimization
goal in various designs (see for example [16] or [17]). Also, if the
measurement method is identical, which is the case for the piezore-
sistive sensors discussed in this paper, this figure of merit makes
geometries intended for different measurement ranges, i.e. varying
resonant frequencies and sensitivities, comparable.

In many piezoresistive accelerometer designs, the strain gauges
are embedded into a flexural component of the sensor’s spring
mass system (see schematic example in Fig. 1a) and the sensi-
tivity is increased by maximizing the stress at the location of the
gauges [10]. Other designs obtain higher sensitivities by using self-
supporting elements (as shown in Fig. 1b) that are further away
from the neutral axis and thus have a better strain per displace-
ment ratio (∝�L/�x) [12,16].  The idea of both design variants is
to maximize the strain energy in the piezoresistive elements. In
contrast to this, an approach focusing on displacement rather than

1 Different readout mechanisms may  include piezoresistive and piezoelectric
effects, capacitive measurements and magnetic methods.

stress is presented in this paper. It leads to a new initial geometry
that is implemented as a self-supporting gauge design.

3. Geometrical constant of continuous oscillatory systems

The basic consideration needed for the displacement focused
analysis of the figure of merit of piezoresistive accelerometers, is
the interdependency of the displacement of a spring–mass system
under acceleration load and its first resonant frequency. The inter-
dependency is described by a dimensionless constant ‘C’, called
geometrical constant in the following. This is well known and was
first discussed by Jones [18,19] for elastic plates, before Sundarara-
jan [20] and later Bert and Stephen [21,22] provided derivations
and further examples.2 Hoffmann and Wertheimer [23] analyzed
tapered beams. However, to the authors’ knowledge, the implica-
tions of the geometrical constant have not been explicitly used in
an accelerometer design process yet.

For a single-degree-of-freedom oscillatory system, the resonant
frequency ω0 and the static displacement �x per unit acceleration
a can be related to each other by the simple equation:

�x

a
ω0

2 = 1 (2)

For continuous systems, e.g. plates or beams, a similar equation can
be formulated:

�xmax

a
ω1

2 = C (3)

Here, ω1 is the first eigenfrequency of the system, �xmax is the
displacement at the point of maximum deflection of the system,
when a static acceleration load a, e.g. dead weight, is applied. C is
the previously mentioned dimensionless geometrical constant.

An important implication of C being dimensionless is that any
given spring–mass system can be scaled in size without changing
the value of its geometrical constant. This means, once an advanta-
geous geometry has been developed, it can in principle be scaled to
have the desired bandwidth, while having optimal sensitivity (or
vice versa). Obviously, this method has limits in design processes
where manufacturing constraints or size specifications need to be
met.

Since most accelerometers contain continuous spring–mass sys-
tems, formula (3) is fundamental to optimizing bandwidth, which
is given by ω1, and sensitivity, which is related to �xmax/a, simul-
taneously. By improving the geometrical constant, it is possible to
increase both quantities. Typical values for C range3 from 1 to 3
[21], which means performance variations of up to 200% can be
potentially be realized in different geometries.

4. Calculation of the geometrical constant

The geometrical constant of a system can be calculated by
determining its static deflection curve and the first eigenfre-
quency analytically, experimentally or numerically. If determined
analytically, C can be optimized accordingly. However, for com-
plex geometries, analytic solutions usually do not exist, rendering
experimental or numerical parameter studies the method of choice.
Though this may  be successful, it does not provide insight on why
certain geometries can be beneficial for optimizing C. In order to
develop a general understanding of the magnitude of the geomet-
rical constant for different geometries, it is helpful to consider the

2 In all cited references the equation is shown in slightly dissimilar forms.
3 No theoretical restriction on the range of values is known.
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