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h i g h l i g h t s

• The Benford distribution is a particular case of a more general mathematical statement.
• The exact Benford distribution is valid for the exponential function only.
• Explicit expressions for frequencies are obtained for the power, logarithmic, and tangent functions.
• The kinematic experiment illustrating proposed distributions is reported.
• Analysis of leading digits frequencies in thermal conductivities of liquids data is presented.
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a b s t r a c t

The Benford law states that the frequencies of decimal digits at the first place of numbers
corresponding to various kinds of statistical or experimental data are not equal changing
from 0.3 for 1 to 0.04 for 9. The corresponding frequencies’ distribution is described
by the logarithmic function. As is shown in the present article, the Benford distribution
is a particular case of a more general mathematical statement. Namely, if a function
describing the dependence between two measurable quantities has a positive second
derivative, then thementioned above frequencies decrease for digits from 1 to 9. The exact
Benford distribution is valid for the exponential function only. Explicit expressions for
frequencies of leading digits are obtained and specified for the power, logarithmic, and
tangent functions as examples. The kinematic experiment was performed to illustrate the
above results. Also the tabulated data on thermal conductivities of liquids confirm the
proposed formula for frequencies’ distribution.

© 2016 Published by Elsevier B.V.

1. Introduction 1

Our research is devoted to phenomenological, contra-intuitive law, observed in a diversity of statistical data, also called 2

the first digit law, first digit phenomenon, or leading digit phenomenon. Benford’s law states that in listings, statistical, 3

scientific and engineering data the leading digit 1 tends to occur with probability of 30%, much greater than the expected 4

11.1% (i.e., one digit out of 9). Benford’s distribution was reported first in 1881, when the American astronomer Simon 5

Newcomb noticed that in logarithm tables the earlier pages (which contained numbers that started with 1) were much 6
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more worn and smudged than the later pages. Newcomb noted ‘‘that the ten digits do not occur with equal frequency must1

be evident to anymaking use of logarithmic tables, and noticing howmuch faster first pageswear out than the last ones’’ [1].2

The phenomenon was re-discovered in 1938 by the physicist Frank Benford, who tested it on data extracted from 203

different domains, as different as the surface areas of rivers, physical constants, molecular weights, etc. [2]. Since that, the4

law is credited to Benford. The Benford law is expressed by the following statement: the occurrence of first significant digits5

in data sets follows a logarithmic distribution:6

P (n) = log10


n + 1
n


(1)7

where P(n) is the probability of a number having the first nonzero digit n.8

Since that, Benford’s law was applied for the analysis of the statistical data related to a broad variety of statistical data,9

including atomic spectra [3], population dynamic [4], magnitude and depth of earthquakes [5], genomic data [6,7], mantissa10

distributions of pulsars [8], infrared spectra of polymers [9], statistical analysis of the turbulent eddy motion [10] and11

economic data [11,12]. Alternative to Benford distribution formulae have been proposed [13]. Distinguishing noise from12

chaos by the analysis of the first digits distribution was discussed in Ref. [14].13

While Benford’s law definitely applies tomany situations in the real world, a satisfactory explanation has been given only14

recently through theworks of Hill, who called the Benford distribution ‘‘the lawof statistical folklore’’ and ‘‘themathematical15

gem’’ [15–17]. Various sources of the Benford distribution were discussed in the literature: from the physical arguments,16

relating the origin of the Benford law [18] to the scaling invariance of physical systems up to the properties of the positional17

(place-value) notation accepted for representing various sets of data [19]. The possible thermodynamic structure of the18

Benford distribution was treated in Ref. [20].19

Engel et al. demonstrated that the Benford law takes place approximatively for exponentially distributed numbers [21].20

The breakdown of the Benford law was reported for certain sets of statistical data [9,22].21

It should be mentioned that the grounding and applicability of the Benford law remain highly debatable [17]. In spite of22

this, the Benford law was effectively exploited for detecting fraud in accounting data [23,24]. Our paper is devoted to the23

revealing mathematical roots of the Benford law.24

2. Mathematical roots of the Benford distribution25

Consider two measurable quantities, x and y = f (x), where f (x) is a positive monotonic function of x with a positive26

second derivative f ′′ (x) > 0 defined within some sufficiently large interval xmin < x < xmax. Let the values of x are27

measured with the equal probabilities. Then, the frequency P (n) of decimal digits n = 1, 2, 3, . . . , 9 appearing at the first28

decimal place of f (x) values is a decreasing function of n. For the exponential function f (x) = ax the frequency P(n) fulfill29

the Benford law (1) but for other functions satisfying the above conditions, these decreasing dependences are different.30

Proof. The interval of y values [1 ·10m, 1 ·10m+1)wherem is a positive or negative integer contains all of 9 digits at the first31

decimal place. The corresponding values of x belong to the interval

f −1


10m

, f −1

10m+1 where f −1 (y) is the inverse32

function of f (x). The only restriction on m is

f −1


10m

, f −1

10m+1

⊂ [xmin, xmax]. The probability distribution of the33

measured quantity x is a constant on the above assumption, thus the probability to measure the value x between values x134

and x2 may be written as (x1 < x2)35

P (x1, x2) =
x2 − x1f −1


10m+1

− f −1

10m . (2)36

Thus, the probability P(n) to measure the value of the dependent quantity beginning with the digit n is37

P (n) =
f −1(10m

· (n + 1)) − f −1(10m
· n)

f −1

10m+1

− f −1

10m . (3)38

Obviously the probability P(n) is normalized on the interval

f −1


10m

, f −1

10m+1:39

9
n=1

P (n) = 1. (4)40

The relation (3) allows one to obtain the appropriate probabilities for particular functions satisfying the above41

assumptions (see below).42

Now consider the continuous analog P(y) of P(n) in Eq. (3)43

P (y) =
f −1 (y + a) − f −1(y)

f −1

10m+1

− f −1

10m , a > 0. (5)44
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